Thông tin tài liệu


Nhan đề : Theory of Deep Learning IIb: Optimization Properties of SGD
Nhà xuất bản : Center for Brains, Minds and Machines (CBMM)
Mô tả: In Theory IIb we characterize with a mix of theory and experiments the optimization of deep convolutional networks by Stochastic Gradient Descent. The main new result in this paper is theoretical and experimental evidence for the following conjecture about SGD: SGD concentrates in probability - like the classical Langevin equation – on large volume, “flat” minima, selecting flat minimizers which are with very high probability also global minimizers.
This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 123 1216.
URI: http://lib.yhn.edu.vn/handle/YHN/715
Định danh khác : http://hdl.handle.net/1721.1/115407
Bộ sưu tậpTài liệu ngoại văn
XEM MÔ TẢ

7

XEM & TẢI

12

Danh sách tệp tin đính kèm:
Ảnh bìa
  • CBMM-Memo-072.pdf
      Restricted Access
    • Dung lượng : 3,75 MB

    • Định dạng : Adobe PDF