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INFLUENCE OF MASONRY ON INFILLED FRAME  

WITH AND WITHOUT OPENING 
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Abstract 

The effect of masonry infills on the global response of frames is widely recognized but it is 

often neglected in the analytical models. Because of lack of effectively technique for 

modelling the infilled frame, in current practice, the structure is normally designed as a 

pure frame and masonry is considered as static load. Researches show that an infilled frame 

structure without opening actually performs better than a bare frame one against statistic or 

dynamic forces but when masonry infills have opening, however, the analytical model is 

again difficult. In this study, masonry infills are considered a building envelope with load-

bearing function. A finite element procedure for the effective properties of microcracked 

viscoelastic masonry based on homogenization technique is provided to take into account 

the influence of crack density and time. It is also recommended as a simple means of 

modeling the behavior of the masonry infilled frame with and without opening. The results 

showed that under statistic loads, the masonry infills even in case with opening much 

reduce the displacement of frame compared with bare frame and the masonry significantly 

influences the principal stress field upheaval in the frame. This suggests that it is necessary 

to take into account the behavior of micro-cracked viscoelastic masonry to evaluate more 

accurately the global response of frames and the masonry infills with and without opening. 

Keywords: Masonry infills; homogenization; numerical method; micro-cracked viscoelastic 

masonry; masonry infilled frame. 

1. Introduction 

In recent year, infill walls are well known as a load-bearing structure which 

contributes significantly to the stiffness and resistance of the building. The experimental 

and analytical results indicate that infill masonry without opening can remarkably 

improve the performance of reinforced concrete (RC) or steel and that the probability of 

failure of the frames with regularly distributed infill is much smaller than that of the 

bare frame [1]. To simulate the contribution of the infills to the overall response of the 

structure, there are typically three approaches, namely Macro-modelling, Micro-

modelling and Micro-macro modelling.   

The first one is macro structure model with benefits of computation simplicity and 

efficiency. A linear equivalent compressive strut model is proposed for computing 
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maximum strength and stiffness of masonry walls. This strut is made of same material 

and having the same thickness as the infill panel. The width of strut is equal to one third 

of the infill diagonal length or investigated by a series of tests [2]. After that, the single 

strut model has been modified to describe more accurately the local effects resulting 

from the interaction between the infill panel and the surrounding frame. Several 

researches have proposed modified diagonal strut model by increasing the number of 

the points connecting the infill panel to the columns or by changing the location at 

which the infill transfers load to the columns. However, the complexity and 

computational effort of these models increase and their properties can be difficult to 

validate based on experiments. Furthermore, for the case of wall with opening, there is 

no logic in providing a single diagonal strut connecting the node of frame as done for 

the cases of fully infilled walls. 

The second approach (micro structure models) uses a finite element analysis. It 

requires modeling of the frame elements, the masonry bricks, as well as interface 

between the bricks and at the joint between the wall and the frame. It is obvious that 

when micro-models are used, much more refined analyses on numerous elements are 

needed compared with macro-models. The computational difficulty of micro structure 

models requires for a more simplified modeling approach, so a simplified micro-model 

approach was proposed as can be seen in [3]. However, it still requires a high 

computational effort. 

Meanwhile, the third approach (micro-macro approach) defines for brickwork a 

Representative Elementary Volume (REV) modeled according to the microscopic 

approach and then the macro behavior of masonry is identified through various loads 

applied to the REV. The frame elements are modeled normally like the second 

approach. For the brickwork, some analytical solutions based on analytical 

homogenization procedures or equivalent periodic eigenstrain method were applied in 

[4, 5]. This approach provides a good understanding at local and global scales with a 

low computational cost even in the non-linear case and in multi-story building design. 

Besides, it is also a good choice for modeling masonry infilled frame with opening. 

Although there are many analytical and numerical studies on micro-macro modeling of 

masonry wall, however, few researches have been considered it as infill masonry wall in 

contact with frame, especially in case of wall with opening. Therefore, the improvement 

of numeric modeling techniques is required to capture the physical behavior of the 

relationship between the infill and frame.  

In addition, the non-linear phenomena occurred in masonry infill and in the 

masonry-frame interface must be adequately considered in the design of masonry 

infilled frame for the model to be realistic. Creep strains should be accounted for 
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because it significantly contributes towards the material properties of masonry. Many 

experimental investigations on the behavior of brittle materials subjected to sustained 

stresses have been carried out. Similarly to concrete and other materials, at constant 

stress, masonry can be assumed to be viscoelastic [6, 7]. Besides, the nonlinear 

mechanical behavior for the masonry is due to the creep behavior of the mortar. Among 

a number of rheological models examined to predict the creep of mortar, the Modified 

Maxwell model is likely the most accurate and will be used in this article to describe the 

mortar joint's creep. 

Another problem that may arise in masonry is the decay in material properties 

associated to cracking. When micro-cracks appear, it may damage masonry elements 

locally and lose the load bearing capacity of masonry structure which can be 

accompanied by a facilitation of main structure collapse in dynamic loads (earthquake, 

blasting load, for example). This is especially important for high buildings, which 

consist of frame structure and masonry infill. 

The goal of this article is to provide finite element procedure for the effective 

properties of microcracked viscoelastic masonry and to investigate the behavior of 

infilled frame structure with and without opening. 

In Section 2, the basis of periodic approach for effective viscoelastic properties of 

fractured masonry is reported. In Section 3, the finite element procedure will be 

describe how to determine the effective behavior of fractured viscoelastic masonry. The 

behavior of the masonry infilled frame will be considered in Section 4. At last, the role 

of infill walls will be discussed in Section 5.  

2. Periodic approach for effective viscoelastic properties of fractured masonry 

We know that the mechanical properties of masonry depend on the mechanical 

properties of components and their distribution. To realize numerical simulation of 

viscoelastic masonry, it is necessary to model their behavior. In this study, a hypothesis 

of safe elastic bricks and micro-cracked linear viscoelastic mortar is supposed. It should 

be noted that many models seem to be acceptable, among them, the Modified Maxwell 

(MM) one (see Fig. 1) is chosen because it might be properly able to represent the creep 

behavior of masonry ages at loading (see [8]). Following this numerical approach, a 

macro-modelling approach associated with a larger number of degrees of freedom was 

presented by [9] where rigorous non-linear behavior of the structural elements may be 

included. Following the micro-macro approach, Anthoine A. was the first person to 

suggest the use of finite element method (FEM) applied on a REV but his work was 

limited in the elastic behavior of two components [10]. It is interesting to use this idea 

to focus on the micro-macro approach where an extension of FEM for the viscoelastic 
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case will be developed. However, this numeric model cannot be applied directly to a 

masonry in which one of components (i.e., mortar) is micro-cracked linear viscoelastic. 

The Laplace-Carson transform is one way to go from the real-time space to symbolic 

one where the behavior non-aging linear viscoelastic (NALV) of the component 

becomes linear elastic [11] proposed to identify the best approximate effective behavior 

of a NALV cracked concrete within the class of Burger models by using the coupling 

between classical homogenization and Griffith's theory. The idea consists that in the 

symbolic space, the displacement jump is linearly dependent on the macroscopic stress 

(dilute scheme) and that the behavior of micro-cracked viscoelastic concrete still 

follows the same class of model (i.e., Burgers) in the short and long terms. The 

originality of this work is that we can use this idea to define an effective linear 

viscoelastic behavior of micro-cracked mortar with Modified Maxwell (MM) model 

(see Fig. 1) which then has to be used in the periodic homogenization of the 

heterogeneous masonry. 

 

Figure 1. Rheological model for mortar. 

2.1. Basic of the periodic approach 

In most cases of building practice, brick and mortar are periodically arranged.  

A micro-macro approach of homogenization based on three steps was proposed. The 

first step is to define a REV. Reminded that the choice of REV is not unique, as shown 

in [4, 10]. A good choice can reduce the computational cost. As the considered basic 

cell plane is symmetrical to two axes, the study carried out on a quarter cell with 

ordinary boundary conditions resulting from the combination of periodicity and 

symmetry (see Fig. 2).  

 

Figure 2. A quarter cell. 
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Then, the second step consists in analyzing the local consequence of a global load 

in terms of fields of stress (and strain) in the REV. By applying a uniform displacement 

load at the edge of VER (see Fig. 3) [10] noted that the macroscopic stress is an average 

of the stress field in REV as: 
1

S

ds
S

      with S  is the total area of S. The 

macroscopic stress can be rewritten by: m m b b      where m and b are 

respectively volume fractions of mortar and bricks; ,m b   are the averages of the 

stress in mortar and bricks. 

 
Figure 3. Periodic boundary conditions at the edges of a quarter cell.  

Simple displacement u along the first axis (a), the second axis (b) and simple shear (c). 

The last step is homogenization, which aims at expression of the behavior of equivalent 

homogeneous medium. Under the plane stress assumption, the macroscopic tensor of elastic 

stiffness ℂ̃ has five independent coefficients to be determined (for more detail, see [10, 12]). 

Then, equivalent elastic moduli 𝐸̃𝑖𝑗 and Poisson's ratios ̃𝑖𝑗 are derived by: 
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 (1) 

2.2. Rheological modified maxwell model for viscoelastic mortar 

We now discuss the creep behavior of mortar modeled by using a rheological 

Modified Maxwell model (MM model). In this article, as a class of 3D isotropic NALV, 

the elastic and viscous stiffness are defined by the following fourth-order tensors:  

3     2    ,     , 3     2    ,    e e e v s d e e e v s d

M M M M M M R R R R R Rk k            
 

with 𝑘𝑀
𝑒 , 𝜇𝑀

𝑒  are bulk and shear moduli of the Maxwell series of the mortar without 

cracks; 𝑘𝑅
𝑒 , 𝜇𝑅

𝑒  are bulk and shear moduli of the spring of the mortar without cracks; 


𝑀
𝑠 ,

𝑀
𝑑   are bulk and shear viscosities of the mortar without cracks. 
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The elastic and viscous compliance tensors ,e v

M MS S  is related to the Maxwell part 

by: 
1 1 1 1

    ,     
3  2 

e v

M Me e s d

M M M Mk   
    . The behavioral law of this model reads: 

                  v e v e e e

M M M R M R        (2) 

In the symbolic space of LC, (6) is linear and given by: 

  * * * *                    v e v e e e

M M M R M Rp p        (3) 

Since the apparent “stress-strain'' relation (3) can be written as * * *  with   

* * *3     2   s sk   , so the apparent bulk and shear moduli for the safe mortar can be 

written as follows: 

 
* *1 1

,      
1 1 1 1

/ 3 / 2

e e

s R s R

e s e d

M M M M

k k

k p p

 



   

 

 (4) 

If the derived function of time  a  is 
   

 
a t dt a t

a
dt

 
 , the behavior of MM 

mortar (2) is written: 

               5  6  7  8  1  2  3  4        c c t dt c c t c c t dt c c t             (5) 

with

1  2  3  4 

5  6  7  8 

3  2 1 1 1 1
1 ,    1 , 1 ,    1  ,  

1 1 1 1 1 1 1 1 1 1
  , ,       ,     . 

3  2  3  2 

e e e e e e
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2.3. Effective behavior of microcracked mortar 

The effective behavior of micro-cracked linear viscoelastic concrete was derived 

from a combination of the Eshelby-based homogenization scheme and the Griffith’s 

theory [11]. In the symbolic space, the apparent effective bulk and shear moduli are 

respectively given by: 
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where 𝑘𝑠
∗ , 𝜇𝑠

∗, 𝑣𝑠
∗ are respectively the apparent bulk, shear moduli and Poisson’s ratio 

of the safe mortar. 𝑑𝑐 is crack density parameter, 3

cd Nl , N is number of cracks per 

unit of volume and 𝑙 is radius of the cracks. 

Then, the inversion of the LC transform (ILC) is required to determine the 

effective behavior in the temporal real space. The presence of cracks makes the formula 

of moduli complex, so the ILC is carry out exactly only in some simple cases by 

calculating the integral of Bromwich [13]. It is interesting to approach in the symbolic 

space the symbolic effective moduli by the ones of an existing rheological model, at 

least in short and long terms. Nguyen S.T. et al. suggested to use the same model of the 

safe concrete for the cracked one [11]. In this study, the similar idea is followed to the 

mortar. We will try to approach the cracked mortar by the MM model (for more detail, 

see [14]). Therefore, Eqs. (6) can be rewritten by the following conditions: 

 

   
   
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  (7) 

Using the theorems on the initial and final values:    *

0
lim lim  ; 
p t

f p f t
 

  

   *

0
  lim lim

p t
f p f t

 
 , we have the effective stiffness and viscosity parameter related to 

the MM model: 
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where Q

 and M 

  are given by:  
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For each value of crack density parameter 𝑑𝑐, Eqs. (8) determine characteristics of 

cracked mortar. The viscoelastic properties of hybrid mortar with or without cracks are 

given in Table 1. 

Table 1. The effective properties of hybrid mortar 

   
cd  ( )e

M ck d  ( )e

M cd  ( )s

M cd  ( )d

M cd  ( )e

R ck d  ( )e

R cd  

0.0 2404 1655 3.35 × 108 1.54 × 108 1257 866 

0.1 1846 1440 2.57 × 108 1.33 × 108 965 754 

0.2 1498 1275 2.09 × 108 1.19 × 108 784 667 

3. The finite element procedure for effective behavior of a fractured 

masonry wall 

3.1. The icremental procedure 

Levin et al. ([15]) presented a theorem that can address the homogenization of 

linear elastic materials with pre-stress or initial deformation. Follow this theorem, 

macroscopic stress field at the time  t dt  is written in the form: 

       INC p

MM MMt dt t dt t       (9) 

with  p

MM t  is the pre-stress, which concern the stress and strain at time t and given by: 

      3  4  7  8 

5  6  5  6 

            p

MM

c c c c
t t t

c c c c
  

   
       

   
  (10) 

The stiffness tensor of viscoelastic mortar: 1  2 

5  6 

 INC

MM

c c

c c
  . 
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For the incremental algorithm, we effectuate as follows: 

At t = 0s, instant response is elastic, only the elastic parts of the spring and 

Maxwell contribute to the rigidity of the material. The constitutive law is: 
1 1 1   INC

MM 

with 
1

INC e e e

MM RM R MC C C C   . 

At t = dt, the relation between 𝜎2 and 𝜀2 reads: 
2 2 2 1 INC p

MM MM     

where the pre-stress 
1

p

MM  given by (10) is concern of the stress and train 𝜎1 and 𝜀1.  

Once we have understood the behavior at    1 .t i dt  , we will find easily the 

behavior at time .t i dt . With dt small enough (i.e., 4  10dt s ), we have a very good 

validation between the numerical calculation and analytically solution [14]. 

3.2. The numerical approach for two dimensional REV  

The calculations are carried out step by step with the finite element method for the 

time step 4  10dt s  which is sufficiently small as shown in step of validation (Section 3.1), 

using the rheological behavior law of mortar (i.e., Modified Maxwell) through an 

incremental formulation, as seen in Section 3.1, equation (9) for each step. Noted that 

the relationship between the pre-stress p

MM  expressed at previous time t in the mortar 

and the fictive nodal force 𝑃 is:  

   : m p

MMP    (11) 

with 𝐴𝑚 transformation from stress into forces in the mortar.  

Acording to the relationship (11), p

MM  is transformed into fictive nodal force on 

the mortar. This force is an external force on the mortar in addition to displacement load 

at the edge of VER. Therefore, the overall behavior of the periodic cell is elastic for 

each step of the time and written in this form: 

      cell ,  , :    , c cell c ct dt d t dt d t dt d      (12) 

We can see that the relation (12) is function of the crack density and time. 

Let us evaluate the following properties of a periodic masonry cell (2D) with 

micro-cracked viscoelastic mortar 0.1,   10 mmm

cd e      11000  MPa   2  0 ,b mE E t    

  0.2b  , under the assumption of plane stress.  ,cell ct dt d can be derived by the 

micro-macro approach of homogenization (see Section 2.1) and then equivalent elastic 

moduli 𝐸̃𝑖𝑗 and Poisson's ratios ̃𝑖𝑗 are derived by Eq. (1). 

We see in Tab. 2 that when t exceeds 11 days, effective modules tend to a finite 

asymptotic limit. 
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Table 2. The effective properties of REV 

Time 

(days) 
 1   MPaE   2   MPaE   12   MPaG  12  

21  

0 9761 9257 3821 0.196 0.186 

1 8823 7250 2914 0.191 0.156 

7 8312 6066 2405 0.186 0.136 

11 8305 6060 2403 0.185 0.135 

4. Numerical test for in-plane behavior of masonry infilled frame 

We consider a two-dimensional masonry infilled RC frame under vertical and 

horizontal loads performed by [16].  

 

          (a)                                                    (b)                                                 (c) 

Figure 4. Geometry of three types of frame:  

The masonry infilled RC frame without opening (a), with opening (b) and bare frame (c). 

As seen in Fig. 4, a constant compressive stress of q1 = 0.3 MPa is placed at the 

top of the frame, represents the gravity load of upper story, a constant concentrated 

vertical force of 
1P = 100 KN is applied on the top of two columns and a lateral top load 

2P  or displacement, in this study, two cases are considered: 
2 50P MN  and 

2 110 .P MN  Three types of frame are studied: the frame with infilled masonry without 

opening (a), the frame with infilled masonry with opening (b) and bare frame (c). The 

opening dimensions are 900 mm (width), 1200 mm (height), represent the width and 

height of a window. Material properties corresponding to reinforcing concrete assumed 

for the design are [17]: Ecr = 200000 MPa, νcr = 0.2. The effective modules of masonry 

are given in Table 2 with damage parameter dc = 0.1 accounting for the time of loading. 

The masonry is considered as a homogenous material with no distinction between bricks 
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and mortar. The masonry and the frame are modeled as a series of continuum elements 

with 1 mm × 1 mm dimensions. 

5. Result and discussion  

 
 

(a) (b) 

Figure 5. The principle stress in full masonry (a) and in masonry with opening (b). 

Figure 5 shows a heterogeneous principle stress local field 
11 at t = 11 days, with 

a compression in the upper horizontal interface near the point of concentrated load P2 

and large zones of tension in the right and bottom edges (Fig. 5a). This phenomenon 

predicts the failure of the wall if the compressive or tensile strengths are exceeded that 

agrees with experimental collapse in the literature [18]. Besides, in masonry with 

opening (Fig. 5b), the numerical results for compression zones at the left and right 

corners of the opening are also in good agreement with the experimental results of [19]. 

The computational time required for this case was only 16 minutes to simulate 2D 

micro-cracked viscoelastic masonry infilled frame. Therefore, the coupling between 

finite element procedure and micro-marco approach offers the possibility of modeling 

effectively a masonry infilled frame with opening. 

In Fig. 6, we can observe that the masonry significantly influences the principle 

stress field upheaval in the frame in three types of frame. The maximum and minimum of 

stress are (0.885 MPa; -0.983 MPa), (0.816 MPa; -0.986 MPa), (0.913 MPa; -0.952 MPa) 

for full masonry, masonry with opening and bare frame, respectively. Fig.6c shows the 
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stress distribution in the column and concentrated at three points of both left and right 

columns for the bare frame while the other frames show the stress distribution along 

both columns and upper beam. Therefore, without masonry wall, the bare frame is more 

dangerous at internal lateral left top. Figure 7 shows the maximum lateral displacement 

Ux of the modeled frame for three cases of frame. As can be seen, due to the presence of 

infill masonry (even in case with opening), the displacement is much reduced (52% for 

full masonry and 38% for opening masonry in average) compared with bare frame. 

   

   

(a) (b) (c) 

Figure 6. The principle stress field upheaval in the frame in case of full masonry (a)  

masonry with opening (b) and bare frame (c). 
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Figure 7. Comparison of maximum displacement in direction x (Ux)  

among three types of frame for two cases of load P2. 

6. Conclusion 

In this study, the numerical procedure for effective viscoelastic properties of 

fractured masonry is outlined based on the periodic multi-scale approach. And then, an 

application on masonry infilled frame is implemented in open source finite element 

code to study the effect of micro-cracked viscoelastic masonry infill on the global 

response of frames. 

The results show that the proposed procedure is an effectively technique for 

modelling masonry infilled frame and the masonry infills with and without opening 

significantly influence on global response of frames. This suggests that it is necessary to 

take into account the behavior of micro-cracked viscoelastic masonry to evaluate more 

accurately the global response of frames. Masonry plays an important role in the global 

response of frames for both cases with and without opening. Besides, micro-marco 

approach offers the possibility of modeling effectively a masonry infilled frame with 

opening compared with micro approach and macro approach. 

Future work will devote to study the out-of plane behavior of masonry infilled 

frames and dynamic loading. 
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ẢNH HƯỞNG CỦA KHỐI XÂY ĐẾN KHUNG CÓ TƯỜNG CHÈN  

CÓ VÀ KHÔNG CÓ LỖ MỞ 

Nguyễn Thị Thu Nga, Trần Nam Hưng 

Tóm tắt: Ảnh hưởng của khối xây chèn đến sự làm việc tổng thể của khung đã được biết 

đến rộng rãi nhưng trong mô hình phân tích, điều này thường bỏ qua. Trong thực hành tính 

toán, vì thiếu kỹ thuật mô phỏng kết cấu khung chèn hiệu quả nên kết cấu thường được thiết kế 

như khung không khối xây và khối xây thì được coi là tải trọng tĩnh. Các nghiên cứu hiện nay 

chỉ ra rằng kết cấu khung chèn không có lỗ mở cho ứng xử tốt hơn khung không khối xây khi 

chịu tải trọng tĩnh hoặc động, tuy nhiên khi khối xây chèn có lỗ mở thì mô hình phân tích gặp 

khó khăn. Trong nghiên cứu này, khối xây chèn được xem như là kết cấu bao che chịu tải trọng. 

Thủ tục phần tử hữu hạn cho tính chất hiệu dụng của khối xây đàn nhớt có vết nứt dựa trên kỹ 

thuật đồng nhất được đề xuất để tính đến ảnh hưởng của mật độ vết nứt và thời gian. Đây cũng 

là phương tiện khá đơn giản để mô phỏng sự làm việc của khung chèn có và không có lỗ mở. 

Kết quả cho thấy, dưới tác dụng của tải trọng tĩnh, khối xây chèn ngay cả trường hợp không có 

lỗ mở đều làm giảm đáng kể chuyển vị của khung so với khung không khối xây và khối xây gây 

ảnh hưởng đáng kể đến sự biến đổi trường ứng suất chính trong khung. Do đó, cần phải tính 

đến ứng xử của khối xây đàn nhớt có vi vết nứt để đánh giá chính xác hơn sự làm việc tổng thể 

của khung và khối xây chèn có và không có lỗ mở. 

Từ khóa: Khối xây chèn; phương pháp đồng nhất; phương pháp số; khối xây đàn nhớt có 

vết nứt; khung chèn. 
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