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Abstract

We give some overview of Legendre-Fenchel duality.

Keywords: Legendre-Fenchel duality.

Tém tit

Chiing t6i dua ra mot vai tong quan vé ddi ngiu Legendre-Fenchel.

Tir khoa: Dbi ngiu Legendre-Fenchel.

1. Introduction

Legendre-Fenchel duality plays a helpful
role in convex optimization. Herein, we intro-
duce some overview of Legendre-Fenchel dual-
ity, with an eye toward later applications in non-
linear elasticity. The basic tool here is functional
analysis.

2. Preliminaries

In this paper, we work with real field. The
notations here are as introduced in [1]. The dual
space of normed vector space X is denoted by

X*, with the associated duality x=:,-) x. The bid-
ual space of X is denoted by X**. In case X is a
reflexive Banach space, X** will coincide with
X by means of the usual canonical isometry.

Let A be a subset of X. The indicator func-
tion of A is defined by

1) 0if xe A,
X):=
A +ooif x¢ A.

A function g : X — RU {400} is proper if
{x € X|g(x) < +oo} # @.

Let £ be a normed vector space and let
g: X — RuU{+o0} be a proper function. The
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Legendre-Fenchel transform of g is the function
g": 2" > RU{+oo}
defined by

g €X' — g¥(€):=sup{z+(€,0)x — g(o)}.

ogeX

In nonlinear elasticity, o and € represent the
traditional stress and strain, respectively.

3. Legendre-Fenchel duality

We consider a given reflexive Banach space
2. The next theorem summaries some basic
properties of the Legendre-Fenchel transform.
We refer the readers to [1, 2] for the statement
and proof.

Theorem 3.1 ([1, 2]). Let X be a reflexive Ba-
nach space, and given g : £ — Ru{+oc} a proper,
strictly convex, and lower semi-continuous func-
tion. Then, the Legendre-Fenchel transform g* :
2* - RuU{+o0} of g is also proper, strictly con-
vex, and lower semi-continuous. Let

g ioex - g" (o) := sup{z(€,0)z—g" (€)}
eex*

denote the Legendre-Fenchel transform of g*.
Then, (with X** = X),

§ =&

The equality g** = g forms the Fenchel-
Moreau theorem.

Given a minimization problem (2?) with

,irgG(a)’ (D

provided a function G : £ — RU {400} of the spe-
cific form given in Theorem 3.2, the following
result will be the basis for defining two differ-
ent dual problems of problem (2?) with (1). The
proof is based on Theorem 3.1 and can be found
in [1].

Theorem 3.2 ([1]). Let Z and V be two reflexive
Banach spaces, and given g : X — RU {+o0} and
h:V* - RU{+o0} two proper, strictly convex,
and lower semi-continuous functions, let A : X —
V* be a linear and continuous mapping. Let the

function G: X — RU {+o0} be defined by.
G:0€X2— G(o):=g(0o)+ h(Ao).

Finally, let the two Lagrangians associated with
the minimization problem (2?).

L:IxIT - {—ocol URU {+00}

and
L3 xV —{—ocol URU {+o0o}

be defined by
L (0,€)eXxZT" — L(0,€)
where
ZL(0,€):=5(€,0)x—g" (€) + h(Ad),

and
Lo, v)eXxV — Lo,V

where
ZL(0o,v):=g(0)+y (Ao, v)y —h* (V).
Then,

in}f:G(a) = inf sup Z(o,€) = inf sup&?(a, v).
gc

”ezeez* OEX ey

In our case, as in [1], the dual problem cor-
responding to the first inf-sup problem found in
Theorem 3.2 is defined as problem (£2*) with

sup G* (),

€ex”

where

G"(€):= inf{s(e,0)z+h(A0)}-g"(€) VeeZ'.
2)

The dual problem corresponding to the second
sup-inf problem is defined as problem (£2*) with

sup G*(v),
veV
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where
G*(v):= ;Ielg{g(a)+z*</\a, Wyl-h*(v) VYveV.
3)
A key matter then includes deciding whether
the infimum found in problem (£2) with (1) is
equal to the supremum found in either one of its
dual problems.
If this is the case, the next issue consists
of identifying whether the Lagrangian £ has a
saddle-point (T,E) e Z x X*.

4. Conclusions

In this paper, we introduce some overview of
Legendre-Fenchel duality, in the spirit of convex

optimization. We wish to later apply this knowl-
edge to nonlinear elasticity in three-dimensional
settings. The main tool here is functional analy-
sis.
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