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Abstract
We give some overview of Legendre-Fenchel duality.
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Tóm tắt
Chúng tôi đưa ra một vài tổng quan về đối ngẫu Legendre-Fenchel.

Từ khóa: ối ngẫu Legendre-Fenchel.

1. Introduction

Legendre-Fenchel duality plays a helpful
role in convex optimization. Herein, we intro-
duce some overview of Legendre-Fenchel dual-
ity, with an eye toward later applications in non-
linear elasticity. The basic tool here is functional
analysis.

2. Preliminaries

In this paper, we work with real field. The
notations here are as introduced in [1]. The dual
space of normed vector space X is denoted by

X ∗, with the associated duality X ∗〈·, ·〉X . The bid-
ual space of X is denoted by X ∗∗. In case X is a
reflexive Banach space, X ∗∗ will coincide with
X by means of the usual canonical isometry.

Let A be a subset of X . The indicator func-
tion of A is defined by

I A(x) :=
{

0 if x ∈ A ,

+∞ if x ∉ A .

A function g : X → R∪ {+∞} is proper if
{x ∈ X |g (x) <+∞},;.

Let Σ be a normed vector space and let
g : Σ → R ∪ {+∞} be a proper function. The
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Legendre-Fenchel transform of g is the function

g∗ :Σ∗ →R∪ {+∞}

defined by

g∗ : ε ∈Σ∗ → g∗(ε) := sup
σ∈Σ

{Σ∗〈ε,σ〉Σ− g (σ)} .

In nonlinear elasticity, σ and ε represent the
traditional stress and strain, respectively.

3. Legendre-Fenchel duality

We consider a given reflexive Banach space
Σ. The next theorem summaries some basic
properties of the Legendre-Fenchel transform.
We refer the readers to [1, 2] for the statement
and proof.

Theorem 3.1 ([1, 2]). Let Σ be a reflexive Ba-
nach space, and given g :Σ→R∪{+∞} a proper,
strictly convex, and lower semi-continuous func-
tion. Then, the Legendre-Fenchel transform g∗ :
Σ∗ → R∪ {+∞} of g is also proper, strictly con-
vex, and lower semi-continuous. Let

g∗∗ :σ ∈Σ∗∗ → g∗∗(σ) := sup
ε∈Σ∗

{Σ∗〈ε,σ〉Σ−g∗(ε)}

denote the Legendre-Fenchel transform of g∗.
Then, (with X ∗∗ ≡ X ),

g∗∗ = g .

The equality g∗∗ = g forms the Fenchel-
Moreau theorem.

Given a minimization problem (P ) with

inf
σ∈Σ

G(σ) , (1)

provided a function G :Σ→R∪ {+∞} of the spe-
cific form given in Theorem 3.2, the following
result will be the basis for defining two differ-
ent dual problems of problem (P ) with (1). The
proof is based on Theorem 3.1 and can be found
in [1].

Theorem 3.2 ([1]). Let Σ and V be two reflexive
Banach spaces, and given g :Σ→ R∪ {+∞} and
h : V ∗ → R∪ {+∞} two proper, strictly convex,
and lower semi-continuous functions, let Λ :Σ→
V ∗ be a linear and continuous mapping. Let the
function G :Σ→R∪ {+∞} be defined by.

G :σ ∈Σ→G(σ) := g (σ)+h(Λσ) .

Finally, let the two Lagrangians associated with
the minimization problem (P )

L :Σ×Σ∗ → {−∞}∪R∪ {+∞}

and
L̃ :Σ×V → {−∞}∪R∪ {+∞}

be defined by

L : (σ,ε) ∈Σ×Σ∗ →L (σ,ε)

where

L (σ,ε) := Σ∗〈ε,σ〉Σ− g∗(ε)+h(Λσ) ,

and
L̃ : (σ, v ) ∈Σ×V → L̃ (σ, v )

where

L̃ (σ, v ) := g (σ)+V ∗〈Λσ, v〉V −h∗(v ) .

Then,

inf
σ∈Σ

G(σ) = inf
σ∈Σ

sup
ε∈Σ∗

L (σ,ε) = inf
σ∈Σ

sup
v∈V

L̃ (σ, v ) .

In our case, as in [1], the dual problem cor-
responding to the first inf-sup problem found in
Theorem 3.2 is defined as problem (P ∗) with

sup
ε∈Σ∗

G∗(ε) ,

where

G∗(ε) := inf
σ∈Σ

{Σ∗〈ε,σ〉Σ+h(Λσ)}−g∗(ε) ∀ε ∈Σ∗ .

(2)
The dual problem corresponding to the second
sup-inf problem is defined as problem (P̃ ∗) with

sup
v∈V

G̃∗(v ) ,
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where

G̃∗(v ) := inf
σ∈Σ

{g (σ)+Σ∗〈Λσ, v〉V }−h∗(v ) ∀v ∈V .

(3)
A key matter then includes deciding whether

the infimum found in problem (P ) with (1) is
equal to the supremum found in either one of its
dual problems.

If this is the case, the next issue consists
of identifying whether the Lagrangian L has a
saddle-point (T ,E ) ∈Σ×Σ∗.

4. Conclusions

In this paper, we introduce some overview of
Legendre-Fenchel duality, in the spirit of convex

optimization. We wish to later apply this knowl-
edge to nonlinear elasticity in three-dimensional
settings. The main tool here is functional analy-
sis.
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