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Abstract

We study some properties involving the strain energy for a nonlinear elasticity problem with geometric linearity in one-

dimensional and strain-limiting settings.

Keywords: Strain energy; nonlinear elasticity; geometric linearity; strain-limiting.

Tém tit

Chiing t6i nghién ctiu mot vai dic tinh ctia ning lugng bién dang cho mot bai todn do dan hoi phi tuyén véi su tuyén tinh

hinh hoc trong thiét 1ap mot chiéu va gii han bién dang.

Tir khoa: Ning luong bién dang; do dan hdi phi tuyén; su tuyén tinh hinh hoc; gi6i han bién dang.

1. Introduction

We consider in this paper a displacement
problem in strain-limiting theory of nonlinear
elasticity as introduced in [1, 2]. In particular, we
study the properties of strain energy for a nonlin-
ear elasticity problem with geometric linearity in
one-dimensional and strain-limiting settings.

2. Formulation of the problem

2.1. Classical formulation
We consider herein a spatially 1D composite
rod formed by nonlinear elastic material, which

is computationally denoted by Q. Assume that Q
is a bounded, connected, open, Lipschitz domain
of R. The boundary of the set Q is represented by
0Q), which is Lipschitz continuous, consisting of
two parts 0Q 1 and 0Qp.

For simplicity, the rod is assumed to be at a
static state after the action of body forces (along
the rod) f: Q — R and traction forces G:0Qr —
R. The displacement u : QO — R is considered
on 0Q2p. We are investigating the strain-limiting
model of the following form (as in [1]):

o
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That is,
E

0=1" BIET" 2)
In Egs. (1) and (2), B is the strain-limiting param-
eter (which will be discussed in the next para-
graph), o stands for the Cauchy stress 0 : Q — R,
and E denotes the classical linearized strain ten-
sor (which implies geometric linearity)

1
E::E(Vu+VuT). 3)
In one-dimensional setting,
E=u, 4)

saying, the spatial derivative of u. Therefore, by
(2), we obtain

/

u
= ) 5
o 1= Bl )
We derive from (1) that
o] 1
|E| = < —. 6
1+Blol p ©)

1
This shows that B is the upper-bound on |E|

and choosing sufficiently large § produces small
upper-bound on the limiting-strain, as desired.
Nevertheless, we refrain from too large §. If § —

1 C
oo then |E| < — — 0, which is not an expected be-

havior. In this paper, £ is taken so that the strong
ellipticity condition [1] is attained, to prevent bi-
furcations arising in numerical simulations.

2.2. Function spaces

Let V= H& (Q) is our needed space. Nev-
ertheless, the methods in this paper can be ex-
tended to more general space Hé’ (Q), where 2 <
p < oo. The space Wol’2 (Q) is of interests because
it can help handle displacements that vanish on
the boundary 0Q of Q.

Let H1(Q) be the dual space, which is the
space of continuous linear functionals on H(} (Q),
and the value of a functional b € H 1(Q) at
a point v € H;(Q) is denoted by (b,v). The
Sobolev norm | - || H(@) is of the following form:

1
2 2 z
1915300 = (101220) + 190122} -

The dual norm to | - || HYQ) is represented by

[ eax=o}

The following problem is of our interest: Find
ue H'(Q) and o € L' (Q) ([3]) such that

|| . ||H—1(Q)-
We define

feHi(Q):{geHl(Q)

—div(o)=f 1nQ,
u/
o= in Q,
1-plu| (7
u=0 onodQp,
c=G onoQr.

Here, we assume that Q7 = @. Using (7), we
rewrite the considered formulation in the form of
displacement problem: Find u € H'(Q) such that

. u .
_le(m) = f m Q, (8)
u=0 onoQ. 9)
Let
P (10)
alx,u’) = 1—ﬁ|u’|’

in which u(x) € Wol’2 Q).

3. Existence and uniqueness

In [4], the existence and uniqueness of solu-
tion to (8)-(9) is proved and thanks to the follow-
ing Lemma ([5, 6, 4]).

Lemma 3.1. Let

z::{(eme))og(K%}. (11)
For any & € Z, we consider the mapping
¢
Z— F():= R.
A e
Then, for each ¢1,¢2 € Z, we get
I¢1—¢ol
F —-F < , 12
Fe=FeN= v ane Y
(FE)-FE)E &) =& -&F. (13)

In our case of 1D, the solution u« can be found
directly from (8)-(9).
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4. Hyperelasticity

The considered model (1) is compatible with
the laws of thermodynamics [7, 8], which means
that the class of materials are non-dissipative and
elastic. Moreover, this class of materials is hyper-
elastic [1, 9]. Specifically, the relation (2) can be
derived from the strain energy function

h(E) = h(EI), (14)

with

- r
h(r)':/l—ﬁr dr. (15)

It is simple to verify that
o =0ph(E) = 0ph(E)).
In our case, the strain energy function ob-
tained in [1, 9] is of the form
1
P
The complementary energy function is de-

fined through Legendre transformation of the
strain energy:

h(r):= (In(1 = Br) + Br). (16)

k@):=-hE)+o-E=k(ol). (17)
In our setting, (17) has the form
k(r):= i(,6r—1n(1 + Br)). (18)

iz
5. Some properties of strain energy

Thanks to [9], we consider the expression
J(w) =/ h(Dv|)dx—L(v)
Q
1
= / (——2) [(In(1 - B|Dv|)+ BIDv|ldx— L(v),
ol P
(19)
where
L(v) = / frdx,
Q
Vi=Hy(Q) ={ve H Q) |trv=00n0Q}.
The following properties of J(v) readily hold.

Lemma 5.1. J(v) is proper, strictly convex, and
continuous on V.

Proof. We prove, for instance, the strict convex-
ity. Regarding the last two summands in (19), the
convexity of B|Dv| and L(v) comes from their
linearity on V.

For the first summand of (19), the strict con-
vexity follows from the fact that the increasing

1
and strictly convex function k; (y) = (— E) In(1-
1

By) (V O<sy< B) combining with the convex
function ko (v) = |Dv| produces a strictly convex
function. More specifically, the first and second
derivatives of k;(y) with respect to y are both
positive:

1

1
_ - S0
BI-By)

ﬁZ

(increasing of k),

(ki(y)' = ( In(1 —ﬁy))

(ﬁ(liﬁy)),: (l—lﬁy)z >0

(strict convexity of ky).
Now, we want to show that for all € [0, 1]
and v,weV,

(ki (y))" =

(kiokz)(tv+(1-1Hw)

<tlkiok))()+ Q-1 (kyoky)(w).
It is clear that

(kiok)(tv+(1-Dw)

=ki(ko(tv+ (1 - Dw))

< ki (thko(v) + (1 = ) ko (w))

< tki(ko(v) + (1 = D) ky (k2 (w))

=t(kyoky)(v)+ (1 —1)(kyok2)(w),

and we are done.

Remark 5.2. As a consequence of Lemma 5.1,
for the minimization problem

J(w) = inf J(v),
veV

it is well-known (see [10, 11], for instance) that
the unknown displacement vector field u: Q —
R3 is the unique solution.
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With the given displacement problem in
three-dimensional strain-limiting theory of elas-
ticity, this minimization problem, instead of be-
ing called principle of minimum potential energy,
will be modernly referred to as the displacement
Sformulation [12].

6. Conclusions

In this paper, we investigate the properties
of strain energy for a nonlinear elasticity prob-
lem with geometric linearity in one-dimensional
and strain-limiting settings. The results here still
hold in higher dimensions (for example, three).
An open question is extending this study to the
(complementary) stress energy.
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