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 ABSTRACT

 

Background: Halofuginone (HF) is a natural product that has been shown to have 

therapeutic benefits in a variety of pathologic conditions, from cancer to autoimmune 

diseases. These beneficial effects are mainly through inhibition of pro-inflammatory 

cytokines. Inflammatory cytokines have been recently shown to exert a crucial role in 

development of osteoarthritis and one of their most important targets is Matrix 

metallopeptidase-13 (MMP-13). In this preclinical study, we investigated the effect of HF 

on the progression of Osteoarthritis.  

Methods: The effect of adding HF ± IL-1β/TNF-α on mRNA expression of MMP-13 

on the C28/I2 Chondrocytes was evaluated with qPCR in vitro.  To study the effect of HF 

in vivo, a mice destabilization of the medial meniscus (DMM) osteoarthritis model was 

employed and untreated control group were compared with early treatment with HF 

(starting 48 hours post-surgery for 12 weeks) and late treatment (4 weeks post-surgery for 

8 weeks).  After sacrificing the animal, joint destruction in the knee tissue was assessed 

with Safranine O/Fast Green staining and MMP13 expression was evaluated by 

immunohistochemical staining.  

Results: In chondrocytes, MMP-13 expression was significantly increased with IL-1β 

or TNF-α (13.77-fold, p-value<0.05 and 5.8-fold, p-value<0.05, respectively). Addition 

of HF Significantly reduced MMP13 expression close to baseline levels (1.73-fold, p-
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value<0.05 when co-incubated with IL-1β and 1.6-fold p-value<0.05 when co-incubated 

with TNF-α). Injection of HF in the mice osteoarthritis model in vivo, significantly 

reduced Osteoarthritis progression according to OARSI scoring (3.8 vs. 1.16 vs. 1.07, p-

value<0.05) and there was no difference between early vs. late administration of HF. 

While MMP-13 was overexpressed in the control (DMM surgery without HF treatment) 

groups in IHC staining, expression of MMP13 was suppressed by injection of HF in both 

groups. 

 Conclusion: Halofuginone inhibits MMP-13 expression and diminishes joint 

destruction. These preclinical findings provide supporting data for clinical investigation 

of HF as a therapeutic target for osteoarthritis.  

Keywords: Osteoarthritis, Halofuginone, MMP-13, Knee Joint, TMJ 
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INTRODUCTION and REVIEW OF LITERATURE 

 

I. Osteoarthritis: 

a. Overview 

Osteoarthritis (OA) is the most common type of arthritis and musculoskeletal condition 

with a significant health and social burden and one of the main causes of disability 

worldwide. It is caused by destruction of articular components, which leads to the 

functional failure of synovial joints (1-3) (Figure 1).  Over 70% of Americans above the 

age of 55 are affected by OA, which mainly influence knees, hands, hips, spine and 

Temporomandibular joint (TMJ) (4-6). It starts with joint pain accompanied by different 

degrees of limitation in the range of motion and reduced quality of life. Due to the 

increasing longevity of life and obesity in the world, the destruction caused by OA 

rapidly grows which influence life quality of the affected individuals, which has also 

enormous costs to the health care system.  

  
  

 MB Goldring
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in humans [Glasson et al. 2010; Little and Fosang, 
2010]. Gene profiling in experimental OA models 
has provided additional targets for consideration 
[Appleton et al. 2007; Bernardo et al. 2011; 
Lodewyckx et al. 2012; Loeser et al. 2012; 
Yasuhara et al. 2011]. Furthermore, certain 
mediators that determine initiation and progres-
sion of cartilage damage are common to all of 
these models.

The importance of proteoglycan depletion in 
cartilage erosion was demonstrated in Adamts5 
knockout mice, which are protected against pro-
gression of cartilage destruction [Glasson et al. 
2005; Stanton et al. 2005]. However, aggrecan 
depletion, by itself, does not drive OA progres-
sion, as suggested by recent studies in Mmp13 
knockout mice showing that MMP-13 deficiency 
inhibits cartilage erosion, but not aggrecan deple-
tion [Little et al. 2009]. The importance of the 
stability of the extracellular matrix to cartilage 
health is also documented in studies of Timp3–/– 
mice, which each show age-dependent cartilage 
degeneration similar to that of patients with OA 
because of loss of this key MMP and ADAMTS 
inhibitor [Sahebjam et al. 2007]. Similarly, 

Fgf2–/– mice exhibit accelerated spontaneous 
and surgically induced OA due to loss of the 
intrinsic capacity of FGF-2 to inhibit ADAMTS5 
[Chia et al. 2009].

Mouse models have also taught us about the 
patterns of receptors on chondrocytes that sense 
changes in the pericellular matrix. The receptors 
on the resting chondrocyte are protected from 
interacting with certain matrix components by 
the unique structure of the pericellular matrix. 
But their expression and activation change in 
response to mechanical or inflammatory stimuli. 
In Col9a1 knockout mice and Col11a1 haploin-
sufficient mice, the development of OA-like 
changes can be observed with aging, owing to 
decreased amounts of the minor collagens that 
contribute to type II collagen fibril formation 
[Hu et al. 2006; Xu et al. 2005]. In these mice, 
there is little pericellular matrix and the fibrillar 
collagen bundles can be observed closer to the 
chondrocytes. This results in exposure of the 
receptor tyrosine kinase, discoidin domain recep-
tor 2 (DDR2) to its ligand, native type II collagen, 
and preferential induction and activation of 
MMP-13. The association of DDR2, MMP-13, 

Figure 2. Strategies for studying mechanisms of osteoarthritis. The upper left panels show Safranin O/
Fast green-stained human cartilage sections from a normal individual and a patient with osteoarthritis 
(OA) (arrows mark surface fibrillations and duplicated tidemark, derived from the tibial plateau [lower left 
panel] of a patient who underwent total knee replacement surgery (the medial side on the right is more 
affected than the lateral side). The upper right panels show Safranin O/Fast green-stained murine cartilage 
sections from knee joints left unoperated (control) or subjected to destabilization of the medial meniscus 
(DMM) surgery. Differentially regulated proteins and genes are identified in both the clinical material and 
the preclinical model and mechanisms are further studied in cell culture models of isolated chondrocytes in 
three-dimensional pellet or high-density monolayers.

Figure 1: Destruction of cartilage 
in an Osteoarthritic joint (Right 
image, pointed by Black arrow) 
compared to an intact cartilage in 
a healthy joint (Left image)	
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b. Pathogenesis 

OA is a total joint disease that leads to loss of articular cartilage, peri-articular bone, 

synovial joint lining, the supporting connective tissue, and osteophyte formation (1, 2, 5, 

7, 8).  Adult articular cartilage is avascular, and its cellular components are chondrocytes, 

which has low turnover replacement of the extracellular matrix (ECM). Chondrocytes are 

specialized mesenchymal cells that are responsible for synthesis and repair of cartilage 

matrix (9). Articular chondrocytes can respond to direct biomechanical stress by 

increasing the synthetic activity and/or up-regulation of the inflammatory cytokines and 

they are believed to be the central players of osteoarthritis (10). 

In a healthy joint, chondrocytes maintain the matrix components in a low turnover 

condition as opposed to an osteoarthritic joint where chondrocytes, alongside the other 

cells in the synovium, get activated due to exposure to abnormal insults, like high 

magnitude mechanical stress, inflammatory cytokines or different amount of matrix 

proteins and degradation products (11-13). After initiation of the disease, the pathological 

changes in OA follows a consistent pattern, which is chondrocyte clustering subsequent 

to up regulated cell proliferation, which in turn increase the general synthetic activities 

including ECM, expression of degradative proteinase genes, loss of proteoglycans and 

collagen type II degradation (14, 15).  

OA is characterized by significant alterations in the composition, structure and function 

of the articular cartilage. Besides metabolic imbalance, up regulation of the whole 
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endochondral ossification process is an important determinant of OA progression, which 

starts with cell proliferation toward articular chondrocyte hypertrophy and apoptosis. To 

understand the pathophysiology of OA, it is critical to extend our knowledge of how 

abnormal biomechanics impact articular integrity and chondrocyte pathobiology (16) 

(Figure 2). 

Chondrocyte differentiation is an important event in the development and progression of 

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

TNF-a [13,14]. On the contrary, noninjurious cyclical
loading of sufficient magnitude can inhibit IL-1-induced
cartilage matrix degradation [15]. Thus, even in the
absence of overt inflammation, chondrocytes may
respond to mechanical stress by stimulating the expres-
sion and/or activities of inflammatory mediators or by
inducing inhibitors that serve as feedback modulators.

Role of cell–matrix interactions
Chondrocytes have receptors for extracellular matrix
(ECM) components, many of which are responsive to
mechanical stimulation. Included among these receptors
are several of the integrins, which serve as receptors for
fibronectin and type II collagen fragments. Activation of
these receptors can stimulate the production of matrix-
degrading proteinases and inflammatory cytokines and
chemokines, but whether these are initiating events or
serve to feedback amplify matrix degradation has not
been established. The importance of proteoglycan

depletion in cartilage erosion was demonstrated in
Adamts5 knockout mice, which are protected against
progression in the surgical osteoarthritis model. However,
aggrecan depletion, by itself, does not drive cartilage
erosion, as shown in recent studies in Mmp13 knockout
mice, showing that MMP-13 deficiency inhibits osteoar-
thritis progression in the presence of aggrecan depletion
[4].

In contrast to integrins, which bind collagen fragments,
discoidin domain receptor 2 (DDR2) binds specifically to
type II and X collagen fibrils, leading to the activation of its
integral receptor tyrosine kinase. DDR2 is upregulated in
osteoarthritis cartilage and induces specifically the expres-
sion of MMP-13 associated with cleavage of type II col-
lagen. This mechanism was verified in type XI collagen-
deficient (Cho/þ) mice with accelerated osteoarthritis,
which was attenuated, along with reduced MMP-13
expression, when they were crossed with mice deficient
in DDR2 [16]. However, the type II collagen-containing

Inflammation in osteoarthritis Goldring and Otero 473

Figure 1 Key mediators involved in proinflammatory events in osteoarthritis

In response to alterations in the joint environment, inflammation-induced and stress-induced signaling pathways may be activated in the synovium and
cartilage resulting in the production of cytokines, chemokines, adipokines, Toll-like receptor (TLR) ligands, and other inflammatory mediators such as
nitric oxide. This may occur also in response to alterations in the pericellular matrix or the release of damage-associated molecular patterns, which are
TLR and RAGE ligands. The consequent upregulation of cartilage-degrading proteinases by extracellular matrix (ECM) proteins or ECM degradation
products can further promote catabolic activation, phenotypic shift, and apoptosis.

Figure 2: Biomechanical stress, leads to up-regulation of the synthetic activity and the 
inflammatory cytokines, chemokines, adipokines, Toll-like receptor (TLR) ligands, 
and other inflammatory mediators such as nitric oxide. The up regulation of cartilage-
degrading proteinases by extracellular matrix (ECM) proteins and products can 
promote catabolic activation, phenotypic shift, and apoptosis.  

Osteoarthritis. Current opinion in rheumatology. 2011;23(5):471-8. Figure used with 
permission. 
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OA. Transforming growth factor-β (TGF- β) signaling pathway is a major regulator of 

chondrocyte differentiation and cartilage development, maintenance and repair and its 

alterations contribute to the pathogenesis of OA as well (10, 17-20). TGF- β initiates 

chondrogenesis and chondrogenic condensation via activation of fibronectin synthesis 

and N-CAM regulation (21, 22). It also stimulates chondroprogenitor cell proliferation 

and differentiation through Smad3-dependent activation of SOX9 transcription (23).   

Smads are intracellular effectors of membrane-bound serine/threonine kinase receptors 

which is the main route of TGF- β signaling.  Modulation of receptor-Smads signaling is 

one important mechanism, through which TGF-β signaling exerts its biological functions. 

TGF-β signaling can have a dual impact on chondrocyte differentiation. Chondrocyte 

terminal differentiation can be activated by TGF-β signaling via the Smad1/5/8 route 

while it can be inhibited via the Smad2/3 route (24)  

The controversial role of TGF-β in regulating a chondrocyte’s terminal differentiation is a 

result of differential activation of various Smad routes, which can have opposite 

regulatory effects on the terminal differentiation of chondrocytes. One suggested 

mechanism for development of osteoarthritis is a switch in TGF-β signaling, from mainly 

Smad2/3 to dominant Smad1/5/8 signaling which alters articular chondrocytes and 

promotes progression of OA (10, 18, 25).  It is anticipated that the role of TGF-β 

signaling on chondrocyte differentiation can be modified by factors like mechanical 

loading, inflammation and aging (10, 17, 26, 27) (Figure 3).  
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Chondrocytes have receptors for extracellular matrix (ECM) components which respond 

to mechanical overloading or trauma (28). Among these receptors, there are several 

Figure 3: Effects of TGF-β signaling on healthy and osteoarthritic cartilage 

TGF-β and osteoarthritis--the good and the bad. Nat Med. 2013 Jun;19(6):667-
9. doi: 10.1038/nm.3228. Figure used with permission. 
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integrins, which are receptors for fibronectin and type II collagen fragments. Stimulation 

of these receptors activates the production of matrix degrading proteinases and 

inflammatory cytokines (29-33). Activation of inflammatory-induced and/or stress-

induced signaling causes phenotypic shift, apoptosis and aberrant overexpression of 

inflammation-related genes and catabolic genes that play an important role in the 

pathogenesis of OA (12, 34-36). These signals stimulate the release of reactive oxygen 

species (ROS) that cause chondrocyte apoptosis and activation of stress induced kinases 

that promote production of several Metalloproteinases (MMP) especially MMP-13, nitric 

oxide synthase (NOS)-2, Cyclooxygenase (COX)-2 and a disintegrin and 

metalloproteinase (ADAM) (14, 31) (Figure 4).  

 

MMP-13 is the major enzyme that causes cartilage degradation and compared to other 

 MB Goldring
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Activation of canonical NFNB (p65/p50) and 
stress-induced and mitogen-activated protein 
kinase (MAPK) signaling is required for the chon-
drocytes to express MMPs, ADAMTSs, and 
inflammatory cytokines themselves [Goldring  
et al. 2011; Marcu et al. 2010; Pulai et al. 2005]. 
NFNB signaling strongly induces the expression of 
transcription factors such as HIF2D [Yang et al. 
2010] and Elf3 [Otero et al. 2012], which in turn 
bind to and activate MMP13 and other gene pro-
moters (Figure 1). The stress-induced MAPK 
pathways, including the ERK, c-Jun N-terminal 
kinase (JNK) and p38 MAPK cascades, coordi-
nate the induction and activation of gene expres-
sion through transcription factors such as activator 
protein 1 (cFos/cJun), ETS, C/EBPE, and Runx2 
[Goldring and Sandell, 2007; Liu et al. 2010; 
Long and Loeser, 2010; Tetsunaga et al. 2011; 

Tsuchimochi et al. 2010]. Induction of both 
ADAMTS4 and 5 requires Runx2 [Tetsunaga  
et al. 2011], and NFNB and HIF2D [Yang et al. 
2010] mediate ADAMTS4 upregulation, whereas 
MMP-13 induction requires all three transcrip-
tion factors. Recent studies indicate that epigenetic 
mechanisms also play a role through modulation 
of the DNA methylation status on promoters driv-
ing expression of, for example, IL1B and MMP13 
genes [Hashimoto et al. 2009] or through dysreg-
ulation of the microRNAs that are important for 
maintenance of homeostasis [Dudek et al. 2010; 
Miyaki et al. 2010].

As articular cartilage matrix proteins are degraded, 
activation of certain receptors stimulates the pro-
duction of matrix-degrading proteinases and 
inflammatory cytokines and chemokines, either 

Figure 1. Signaling pathways that converge on matrix metalloproteinase13 (MMP13) gene transcription in 
chondrocytes. Binding of the receptor tyrosine kinase, discoidin domain receptor (DDR) 2, to native type II 
collagen results in activation of RAS/RAF/MEK/extracellular-regulated kinase (ERK) signaling in a manner 
independent of integrin- or cytokine-induced signaling. Interleukin (IL)-1, toll-like receptor (TLR) ligand, 
reactive oxygen species (ROS), advanced glycation endproducts (AGEs) interact with the cell through distinct 
receptors that transduce phosphorylation events via cytoplasmic interactions initiating various protein kinase 
cascades. The major pathways involve activation of MAP triple kinases (MTK), MAP kinase kinases (MKKs) 3/6 
and 4/7, and p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which lead 
to activation of activator protein 1 (AP-1) (cFos/cJun), Runx2, E Twenty Six (ETS) factors, HIF2D, and C/EBPE, 
among other transcription factors; and inhibitor of NB (INB) kinases (IKK) D and E, leading to activation of 
nuclear factor kappa B (NFNB) and its translocation to the nucleus. The responses of the target gene, MMP13, 
depend on the presence of DNA sequences within its promoter that bind to the various transcription factors.

Figure 4: Stimulation of receptors for type II collagen fragments activates the 
production of matrix degrading proteinases and inflammatory cytokines, which lead 
to release of ROS and production of MMP-13. 
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MMPs, expression of MMP-13 is relatively restricted to the connective tissue (7, 37). 

Despite integrins, which bind to the collagen fragments, discoidin domain receptor 2 

(DDR2) binds to collagen fibrils type II and X and subsequently stimulates its integral 

receptor tyrosine kinase. Activation of DDR2 in turn induces the expression of MMP-13 

resulting in further cleavage of collagen type II (38-40). In other words, DDR2 is an 

additional receptor, which becomes activated by biomechanical triggers and subsequently 

leads to additional disruption of the peri-cellular matrix and activation of MMP-13 (41). 

MMP-13 not only causes irreversible joint damage in OA and promotes the progression 

of the disease, but more importantly also initiates the onset phase by causing the 

chondrocytes to leave their natural growth and differentiation arrested state (14).  

 Osteoarthritis have been considered as a non-inflammatory disease due to lack of 

neutrophil presence in the synovial fluid (42). On the other hand, some symptoms of the 

disease including pain, swelling, stiffness and loss of function of the joint show footprints 

of inflammation in the disease. Moreover, arthrocentesis from the osteoarthritic joints 

shows inflammatory cytokines, chemokines, and other inflammatory mediators traced in 

and can be measured in the synovial fluid of osteoarthritic patients (12),(43). (Table 1)  
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Evidence Observation References 

Clinical Effusion, Joint swelling or palpable synovitis 
Local signs of inflammation 
Sudden increase in pain 
Night pain and morning stiffness 

Ayral et al 1999 (44) 
Krasnokutsky et al 2008 
(45),  
 

Imaging Association between ultrasound-detected synovitis and 
clinical symptoms of synovitis 
Macroscopic synovial changes detected by arthroscopy 
in about half of patients with knee OA 
Gadolinium-enhanced synovium and increased synovial 
volume detected by MRI 
Correlation between MRI and histological observations 
Arthroscopic synovitis associated with progression of 
knee OA  
Synovitis seen using ultrasonography of symptomatic 
joints 

Ostergaard et al 1997 (46), 
Fernandez-Madrid et al 
1995 (47),  
Ayral et al 1999 (48),  
Loeuille et al 2005 (49),  
D’Agostino et al 2005 (50),  
Ayral et al 2005 (51)  
Keen et al 2008 (52), 

Histological Synovitis in the velocity of degenerative cartilage 
Infiltration of mononuclear cells 
(monocytes/macrophages, activated B cells and T cells) 
Synovial hypertrophy and hyperplasia 
Increased angiogenesis 
Adaptive immune T-cell and B-cell responses to 
fragments of extracellular matrix 
 

Myers et al 1990 (53),  
Alsalamed et al 1990 (54), 
Nakamura et al 1999 (55),  
Shibakawa et al 2003 (56), 
Ayral et al 2005 (51),  
Walsh et al 2007 (57), 
Gobezie R et al 2007 (43), 
Sellam J et al 2010 (58), 
Maldonado M 2013 (59) 

Molecular Production and/or release of proinflammatory cytokines 
(TNF, IL-1β, IL-6, IL-8, IL-15, IL-17, IL-21) 
Increased activity of MMPs  
Increased production of PGE2 and nitric oxide  
Release of EGF and VEGF 
Production of adipokines  
Release of proinflammatory and pain neurotransmitters 
(substance P, NGF) 
Involvement of macrophages in osteophyte formation via 
BMPs 
 

Smith et al 1997 (60), 
Furuzawa-Carballeda and 
Alcocer-Varela 1999 (61), 
Nissalo et al 2002 (62), 
Shibakawa et al 2003 (56),  
Farahat et al 2003 (63), 
Yuan et al 2004 (64),  
Benito et al 2005 (65), 
Presle et al 2006 (66), 
Brentano et al 2007 (67), 
Scanzello et al 2009 (68), 
Raychaudhuri and 
Raychaudhuri 2009 (69) 

Biological 

Markers 

Increased levels of MMP-13, MMP-3 and MMP-9 
Increased levels of CRP (detected by ultrasensitive 
assay) 
 

Conrozier et al 2000 (70), 
Masuhara et al 2002 (71), 
Pearle et al 2007 (72) 

Table 1: Evidence of inflammation in OA 
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A growing list of studies now show that inflammation is the major factor in the 

progression of joint destruction, in addition to the signs and symptoms of the OA (58, 59, 

73-78). Our current knowledge confirms that OA is initiated by both mechanical and 

inflammatory signals, activating similar signaling pathways and influences chondrocytes 

in a flawed attempt (31, 79-81).  

Synovitis is common in the early stage and late stage of OA. This involves infiltration of 

mononuclear cells in the synovial membrane which accompanies with production of pro-

inflammatory mediators like interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α) and 

various chemokines (58)  

Non-traumatic cyclical loading of joints with appropriate magnitude can inhibit the 

induction of IL-1 that would initiate the cartilage matrix degradation (82). However, the 

impact of abnormal biomechanical stress on chondrocytes leads to expression of IL-1 at 

the concentrations which induce the expression of MMP-13, TNF- α, and other catabolic 

genes. IL-1β and TNF-α also activate other pro-inflammatory cytokines like IL-6, IL-17 

and IL-18, and chemokines like IL-8, which many of these factors promote the catabolic 

responses in chondrocytes (12) (Figure 5).  
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Primitive CD4 T cells differentiate into different effectors and regulatory subsets to 

correlate immunity response, among them are TH1, TH2 effector subsets. These T cells, in 

turn, differentiate into pro-inflammatory T helper 17 (Th17) cells, which are also called 

tissue-protective induced T regulatory cells (83, 84).  One important role for cytokines 

IL-1β, IL-23, IL-6 and TGF-β is their influence on differentiation and maintenance of 

Figure 5: Molecular pathogenesis of osteoarthritis under mechanical stress.  
Nat Clin Pract Rheumatol. 2006 Jun;2(6):304-12. Figure used with permission. 
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Th17 lineage (83-86) (Figure 6).  

 

 

Th17 cells were initially introduced to contribute in the pathogenesis of autoimmune 

diseases, and later their significant role in other inflammatory processes, such those in 

infectious diseases was unravel (87-90) (Figure 7).  

Th cells (Th1, Th2, and Th17), T 
regulatory (Treg) cells and induced T 
regulatory (iTreg) cells (Th3 and Tr1). 

De Lange-Brokaar BJ, et al. Osteoarthritis 
Cartilage. 2012 Dec;20(12):1484-99. Figure 6: Th cells lineage (Th1, Th2 and Th17) , T regulatory (Treg) cells and 

induced T regulatory (iTreg) cells (Th3 and Tr1) in Osteoarthritis 
Osteoarthritis Cartilage. 2012 Dec;20(12):1484. Figure used with permission. 
- 
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Th-17 cells produce pro-inflammatory cytokines, mainly IL-17, which activates other 

cytokines, chemokines and prostaglandins. Similar to rheumatoid arthritis (RA), the role 

of Th-17 in the pathogenesis of osteoarthritis has been recently suggested (Figure 8 and 

9).  

It has been shown that although there are quantitative differences in the number of Th17 

cells between OA and RA, there is no qualitative difference between the expression of 

activation markers of Th17 cells between these two diseases (91).  

 

Figure 7: Involvement of the synovium in OA pathophysiology 

The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. 
Rev. Rheumatol. doi:10.1038/nrrheum.2010.159. Figure used with permission. 
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Figure 8: The role of pro-inflammatory cytokines in the pathophysiology of OA.  

Role of pro-inflammatory cytokines in the pathophysiology of osteoarthritis. Nat 
Rev Rheumatol. 2011 Jan;7(1):33-42. doi: 10.1038/nrrheum.2010.196. Epub 2010 
Nov 30. Figure used with permission. 
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           c) Etiology and risk factors: 

 Various risk factors contribute to the development of osteoarthritis. One is mechanical 

factors such as joint injury, occupational/recreational  usage, reduced muscle strength, 

joint laxity and joint misalignment, all through the same mechanism: abnormal 

biomechanics either from mechanical trauma on a normal joint or a normal loading on a 

mal-positioned joint (12). Other factors include genetic factors and constitutional factors 

such as ageing, female sex, obesity and high bone density. 

The articular surface has a critical role in transferring the load in the joint. There is strong 

evidence that certain conditions in which a higher load transfer or altered patterns of load 

distribution are produced can initiate and accelerate the development of OA (92)  

Studies from in vitro mechanical loading experiments show that traumatic static 

compression causes damage to the collagen network and down regulates the synthesis of 

cartilage matrix proteins, while dynamic compression up regulates the matrix synthetic 

activity (93). In response to trauma, the whole expression of inflammatory cytokines, 

stress response factors and cartilage-degrading proteinases are up regulated (36).  
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d) Current treatment 

Several modalities are currently practiced for symptomatic treatment of OA. Non-

Pharmacological management of Osteoarthritis includes exercise and manual therapy, 

weight loss, electrotherapy, acupuncture, aids and devices and invasive treatments such 

as debridement and total joint replacements. Pharmacological management of 

osteoarthritis includes analgesics and anti-inflammatory drugs such as NSAIDs and 

COX-2 inhibitors, opioids and intra-articular corticosteroids injections.  

Currently, there is no effective treatment of OA that can alter the progression of the 

disease. Current therapeutic regimens only provide symptomatic pain relief and do not 

have a major effect on the inflammatory process that leads to the progression of the 

disease. Since these drugs are not targeting the molecular processes responsible for the 

initiation and progression of the disease, there is no proven structure modifying therapy 

available to date (94).  

Studies have shown that the pain and severity of the disease are associated with the 

synovitis (65, 95) and synovitis can be considered as a potential target for therapy in OA 

(58, 96) (Figure 10).  
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Figure 10: Pharmacologic therapies and the site of their impact. 
Nat. Rev. Rheumatol. doi:10.1038/nrrheum.2010.178. Figure used with 
permission. 
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e) Osteoarthritis in TMJ 

Most of the current understanding of cartilage degradation and OA is from large load 

bearing joints like the knee joint (97). In the field of prosthodontics, the 

temporomandibular joint (TMJ) is of large importance because reconstruction of the 

occlusion has a direct effect on the patient’s TMJ. Like the knee joint, the TMJ is a 

complex synovial joint that has an articular disk and it is believed that cartilage 

degeneration process of the TMJ in OA follows a very similar pattern to that of the knee 

joint (98, 99). Their main difference is the type of cartilage that lines the articular 

surfaces. In the knee joint, the articular lining is hyaline cartilage, while in TMJ the lining 

is fibrocartilage (100). 

Temporomandibular disorder (TMD) affects a majority of the population as a myofacial 

dysfunction and degenerative joint disease, which is more common in women between 

the ages of 20-40 years old (101, 102). OA is the most common pathology of TMD (103). 

Osteoarthritis of the TMJ is also a degenerative joint disease, which is age-related and is 

characterized by the continuous joint destruction of the articular tissues in the condyle of 

the mandible and glenoid fossa. Additionally, it has been shown that it is usually initiated 

with increased loading of the joint.  

Signs of OA in TMJ include pain on palpation or pain during opening and lateral 

excursive movements with crepitation during mandibular movement (102, 104). 

Orthopantomogram or CT scans are usually used to evaluate the joint for any signs of 



	
   27	
  

wear or ostephyte formation and to diagnose OA in TMJ (105) (Figure 11).  

 

 

Figure 11: Osteoarthritic TMJs (B), CT-scan view, compared to the normal Joint (A). 
Dentomaxillofacial Radiology (2015) 44, 20140235 . Pictures used with permission. 

 

Interestingly, in a comparison between OA in the knee joint and OA of TMJ, it was 

demonstrated that production of inflammatory cytokines like PGE2 is more significant in 

the TMJ compared to the knee joint, suggesting that inflammation may play a more 

significant role in pathogenesis of TMJ OA compared to the knee joint (100). 

  

for evaluation of TMD and makes between-study comparison
possible (Larsson and Rönnerman, 1981). Hekimo’s Di has been
extensively used to evaluate the clinical or radiographic conditions
of TMD (Shahidi et al., 2013; Kordass et al., 2012; He et al., 2010;
Barrera-Mora et al., 2012; Perillo et al., 2011; Rauhala et al., 1999).
Shahidi et al. (2013) investigated the correlation between articular
eminence steepness measured with CBCT and Helkimo’s Di and
failed to find a correlation. Kordass et al. (2012) investigated the
correlation between computer-assisted measurements of mandib-
ular opening and closing movements and Helkimo’s Di and found a
significant correlation between Helkimo’s Di and frequent popping
sounds in jaw joints and deviation. He et al. (2010) investigated the
relationship between centric relationemaximum intercuspation
discrepancy and Helkimo’s Di in pre-treated orthodontic patients
and found CReMI discrepancy in most of the pre-treated patients
with signs and symptoms of TMD. This discrepancy may be a factor
contributing to the development of TMD in these patients.

The above-mentioned barriers have been overcome with the
advent of CBCT. CBCT has several advantages over CT, such as lower
cost, better access to equipment, lower radiation, and diagnostic
efficacy as high as CT, but superior to those of panoramic radiog-
raphy and linear tomography (Barghan et al., 2012). CBCT is also
superior to CT for visualizing bony changes in TMJ patients,
analyzing lateral slices in isolation, and combining coronal and
lateral slices (Koyama et al., 2007; Honey et al., 2007). Therefore,
CBCT was the imaging method used in this study.

In this study, the condylar bony changes were detected using the
classification of Koyama et al., which was more practical and
convenient for the evaluation of bone changes in TMD patients
compared with other classifications (Koyama et al., 2007). In this
classification, types F and E are comparatively the initial stages of
bony changes. Flattening, which is a typical change of Type F, may

be an adaptive alteration (Crusoe-Rebello et al., 2003) and the first
change of progressive disease (Katzberg, 1989). Type F transitions
to Type E as the disease proceeds, indicating that TMJ is unstable
and that the bone surface will change. Moreover, some clinical
follow-up studies demonstrated that type E might advance to type
D or type S because of the progression of condylar resorption, while
type D might advance to type S after the cortical surface is restored
(Koyama et al., 2007). Thus, condylar bony changes were classified
as the progression stage of TMD in the classification of Koyama et al.
This system of classification was already introduced into the eval-
uation of condylar bony changes observed by CBCT in TMJ OA pa-
tients and was proven accurate for diagnosing condylar bony
changes (Palconet et al., 2012).

The results in this study showed that the score and degree of
Helkimo’s Di were both significantly associated with maximum
condylar bony changes and glenoid fossa bony changes evaluated
by CBCT. The development of the OA symptomatology has already
been described clinically (Rasmussen, 1983). In the initial stage, the
diagnosis of OA was difficult to separate from other types of TMD,
such as internal derangement of the TMJ, by clinical or radiographic
examination. That is, extremely few patients had symptoms of pain
or abnormal function at this stage. Instead, patients might have
clicking or periodic locking of the TMJ. Therefore, the score and
degree of Helkimo’s Di were low. In the second stage, TMJ pain
occurred. The pain may be caused by the soft tissues around the
affected joint under tension and the masticatory muscles in pro-
tective reflex co-contraction as a result of Hilton’s Law (Mercuri,
2008). Moreover, the procession of OA can lead to degradation on
the surface of the articular soft tissue. When there were large
quantities of degraded products that could not be efficiently
resorbed from the joint cavity by the synovial membrane, an in-
flammatory response might be elicited to develop synovitis and

Fig. 1. Sample images of different types of condylar bony changes according to Koyama et al.’s criteria. Images were from subjects in this study. (a) Female aged 28 years with
maximum bony change of condyle was Type F; the score of Helkimo’s Di was 2, and the degree was 1. (b) Female aged 21 years with maximum bony change of condyle was Type E;
the score of Helkimo’s Di was 5, and the degree was 2. (c) Female aged 40 years with maximum bony change of condyle was Type D; the score of Helkimo’s Di was 9, and the degree
was 2. (d) Female aged 39 years with maximum bony change of condyle was Type S; the score of Helkimo’s Di was 17, and the degree was 3.

Fig. 2. Sample images of different types of glenoid fossa bony changes classified into “negative” and “positive”. Images were from subjects in this study. (a) Female aged 25 years
with negative glenoid fossa bony change; the score of Helkimo’s Di was 7, and the degree was 2. (b) Male aged 48 years with positive glenoid fossa bony change; the score of
Helkimo’s Di was 20, and the degree was 3. (c) Female aged 49 years with positive glenoid fossa bony change; the score of Helkimo’s Di was 17, and the degree was 3. (d) Female
aged 30 years with positive glenoid fossa bony change; the score of Helkimo’s Di was 11, and the degree was 3.

N. Su et al. / Journal of Cranio-Maxillo-Facial Surgery 42 (2014) 1402e1407 1405
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f) Osteoarthritis animal models  

For better understanding of the disease, various animal models of OA have been 

established (106). The mice used for OA studies should have at least 10 weeks of age due 

to the fact that OA is a disease of adults and growing animals have a capacity to manage 

joint damage and at that age mice are mature skeletally. Generally, development of 

spontaneous OA is linked to a particular genetic background. For example, STR/ort mice 

spontaneously develop degenerative changes of knee joints with ageing, which is similar 

to human osteoarthritis. 

However, spontaneous OA models develop over a much longer period of the animal’s 

life. Another method of creating an acute model for the study of OA is intra-articular 

injection of monosodium iodoacetate (MIA) or collagenase (107). However, it has some 

limitations. For example, due to the fact that MIA is a metabolic poison, there would be 

extensive death of chondrocytes in this model. Thus, application of this model is mainly 

limited to the induction of OA and it is mainly used for pain related Osteoarthritis 

research (108).  

Mechanical instability-induced osteoarthritis mouse models have been established with a 

microsurgical technique to cause instability in the knee joints. This technique has been 

shown to be reproducible and the disease is very similar to human OA. Four slightly 

different methods have been developed which cause different grades of OA.  
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The partial medial meniscectomy (PMM) and medial collateral ligament transection 

(MCLT) models were the first surgical models of OA in the mouse (109). However, OA 

did not develop in the surgical knee and more severe OA was actually induced in the 

contralateral limb. This result could indicate that increased weight bearing was occurring 

in the non-operated limb (110). Visco et al (109) later hypothesized that mechanical 

instability created in the PMM and MCLT model could be too severe to overcome by the 

animal.  

The two superior and more commonly used models of induced-OA in mice are the 

anterior cruciate ligament transection (ACLT) and destabilization of the medial meniscus 

(DMM). In the ACLT method(111) the first destructive changes in the mouse articular 

cartilage were a defect in the superficial zone evidenced by a decrease of Safranin-

Orange (Safranin-O) staining, followed by a progressive cartilage destruction. These 

changes were very similar to human OA pathology recorded with arthroscopic and 

histological findings (111-113). Although instability was present in the whole knee joint, 

osteoarthritic changes were much more prominent in the tibial cartilage compared to the 

femoral condyle cartilage. This is due to the fact that tibial cartilage is much thinner and 

also osteophyte formation is very rare in the femoral condyle. For the same reason, 

current ACL models are more focused on OA changes in tibial cartilage (113).  

In Figure 12 you can see an overview of the knee joint and the MMTL ligament which is 

transected to generate the generate destabilization of the medial meniscus (DMM) and the 

ACL is transected in the ACLT model (114).  
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Figure 12: (a) Outline of a right knee joint. The MMTL is transected to generate 
destabilization of the medial meniscus (DMM) and the ACL is transected in the ACLT 
model. (b) Overview of Safranin-O stained of a mouse knee joint 4 weeks after DMM 
induction. Grey arrow indicates articular cartilage, white arrow indicates growth plate. 
×40 magnification. ACL: anterior cruciate ligament; F = femur; LCL = lateral collateral 
ligament; LFC: lateral femoral condyle; LM = lateral meniscus; LTP: lateral tibial 
plateau; MFC: medial femoral condyle; MM: medial meniscus; MMTL = medial 
meniscotibial ligament; MTP: medial tibial plateau; PCL: posterior cruciate ligament; T = 
tibia . 

Taken from Mouse genetics Methods and Protocols ISSN 1064-3745 , with permission. 

 

DMM model has been used for induction of OA with great ease and reproducibility(114). 

Studies have been conducted to compare the severity of OA in both models of ACL and 

DMM surgery, aiming to identify a mild to moderate model of OA, in which the effects 

of disease modification in the knocked out mice would not be influenced by the severe 

biomechanical destruction associated with more severe models. Moreover, more severe 

models of OA have a great association with iatrogenic destruction, different 

biomechanical factors, or regenerative changes such as dramatic osteophyte formation or 
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ankylosis, which could make a false impression in the assessment of cartilage 

degradation. 

The DMM model in these studies was completely reproducible and showed a slower mild 

to moderate osteoarthritic progression, which is very similar to the osteoarthritic changes 

in human. DMM model has been applied for evaluation of knocked out mice models in 

order to evaluate the impact of specific genes in the development of OA, it’s progression 

and severity (114-116) (Figure 13).   

 

 
 

Figure 13: Osteoarthritis progression after DMM in wild-type mice. Osteoarthritis 
progression is demonstrated on medial areas of Safranin-O stained sections of right hind 
knee joints at 2 (b), 4 (c), 6 (d), 8 (e), and 12 (f) weeks after DMM surgery. (a) is the 
contra lateral joint. Arrows indicate articular cartilage damage of femoral condyle and 
tibial plateau. (a–f) ×100 magnification   

Taken from Mouse genetics Methods and Protocols ISSN 1064-3745 , with permission. 
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II. Halofuginone 

Halofuginone (HF) is a small molecule that is analogue of Febrifugine, an alkaloid 

derivative isolated from Dichroa febrifuga plant (117). This plant has been used for 

treatment of malaria for centuries (118). Halofuginone [7-bromo-6-chloro-3-[3-(3-

hydroxy-2-piperidinyl)-2-oxopropyl]-4(3H)-quinazolinone] (Figure 14) has been used in 

poultry centers (119, 120). It is also FDA approved additive for the animal’s food for 

prevention of coccidiosis (121) and against protozoan parasites in cattle (122). 

 
Figure 14: Chemical structures of Febrifugine and Halofuginone 

 Recently HF has attracted a lot of attention because of its broad beneficial biologic 

activities against a variety of diseases such as malaria, cancer and fibrosis related and 

autoimmune disorders (123-125).  

HF exerts its biological functions through two distinct mechanisms: (1) inhibition of 

TGF-β signaling pathway (124, 126) and (2) Anti-inflammatory responses through 

inhibition of Th17, as a result of inhibition of prolyl-tRNA synthesis and activation of 
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Amino Acid Response (AAR) pathway (127-129). 

The crosstalk between these two mechanisms may be the TGF-β pathway. Th17 

differentiation in mice initiates with TGF-β, IL-1β and IL-6. In humans, combination of 

TGF-β and IL-21 initiates the differentiation of primitive T cells. 

HF, in vitro, was shown to down regulate Smad3 protein (130), reduce the amplitude of 

TGF-β dependent Smad3 phosphorylation and up regulate inhibitory Smad7 in 

fibroblasts, pancreatic and hepatic cells, myoblasts and tumor cells (131-135). 

 HF is an antifibrotic agent as well. Fibrosis is a result of chronic inflammation, which 

leads to destruction of organ’s architecture and function. Altering TGF-β, MMPs and the 

Tissue inhibitor of metalloproteinases (TIMPs) play an important role in the ECM 

regulation. The antifibrotic feature of HF was discovered by serendipity and later on 

explored further in animal models and in humans (117, 124, 126).  In vitro, HF reduces 

the amplitude of collagen α1 (I) gene expression in murine, avain and human fibroblasts 

derived from cornea (130) and in vivo in scleroderma and graft versus host disease 

(GVHD) patients (136). In animal models, when excess collagen was a characteristic of 

the disease, HF can inhibit the collagen synthesis (131, 137) and resolve the established 

fibrosis (138, 139). The ability of HF to resolve the pre-existing fibrosis is because of its 

ability to down regulate the collagen synthesis and at the same time, up regulates 

collagenase activity by increasing synthesis of TIMPs, which that regulates MMPs 

activity (138, 140, 141).   
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HF inhibition of ProRS activity leads to intracellular accumulation of uncharged tRNA 

and mimics the reduction of available cellular proline. This pathway requires ATP, which 

binds the 2 parts of HF on the human ProRS in a way that one part mimics proline 

attachment and the other part mimics the 3’ end of tRNA (142). 

Th17 cells regulate inflammation through its produced cytokines, mainly IL-17. IL-17 is 

a pro-inflammatory cytokine that stimulates other cytokines, chemokines and 

prostaglandins. HF down regulation of T-cell proliferation is correlated with up 

regulation of cell apoptosis and decrease in proline uptake, and shows the participation of 

amino acid starvation response (AAR) (128, 143, 144). This process takes place by 

activating the integrated stress response (IRS) which happens when cells experiencing 

metabolic, hypoxic or oxidative stress (145).  HF activates the AAR by mimicking 

proline removal, and results in down regulation of inflammatory process (Figure 15).  

 
Figure 15: AAR activation by HF inhibits prolyl tRNA charging enzyme EPRS 
results in uncharged tRNA accumulation. Uncharged tRNA activates the sensor 
kinase GCN2, leading to phosphorylation of eif2a and changes in translation and 
transcription of pro-inflammatory genes. 
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HF also has inhibitory effect on angiogenic cascade like prevention of endothelial cell 

MMP-2 expression and basement membrane invasion(146). 

So far, HF has been studied in a number of clinical trials. It has been locally applied to 

the GVHD patients and has shown a significant decrease in collagen content without any 

systemic or local toxicity and no side effects (147). It has been used for AIDS related 

Kaposi sarcoma(148), in addition to a scleroderma trial, which revealed a statistically 

significant decrease in disease severity score (149). 

HF has been also orally administered as a phase I clinical trial for patients with solid 

tumors and showed that therapeutically effective plasma levels can be reached without 

any toxicity.  The minimum effective dose was 0.5 mg/kg and the maximum tolerant dose 

(MTD) was 3.5 mg/kg. The dose limiting toxicity (DLT) symptoms were vomiting, 

fatigue and nausea (150). 

In a similar fashion to autoimmune and chronic inflammatory disease, therapeutic 

modulation of the tissue remodeling and invasive activities of cells could provide a 

powerful complementary approach to the inhibition of the pro-inflammatory activities of 

immune cells. Despite the previous dogma, we now believe that pathologic infusion of 

inflammation is a distinct characteristic of OA, which reflects failure of the immune 

system to restore tissue homeostasis. HF promotes restoration of immune homeostasis by 

inhibiting the differentiation and expansion of Th17 cells. Our research group at 

Whitman lab has also shown that HF can act directly on fibroblasts to prevent their 
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activation, inhibit chronic inflammation, and modulate pathologic tissue remodeling by 

activating the same target pathway (the AAR pathway) that is critical for 

immunomodulation (127, 145). 

Inflammation plays an essential role in the pathogenesis of the osteoarthritis and 

preventing inflammation without inducing generalized immunosuppression would 

hypothetically be a great therapeutic strategy.  

MMP-13 is interstitial collagenases that degrade type II collagen in cartilage and this is a 

committed step in the progression of OA (151). The expression of MMP-13 is regulated 

by inflammatory responses and is substantially increased in response to IL-1β and TNF-

∝. Elevated levels of these collagenases are observed in arthritic tissues including OA. 

Cytokine-mediated MMP-13 gene regulation plays a crucial role in the pathogenesis 

pathway and thus, it can serve as a potential therapeutic target for inflammatory processes 

of the joints i.e. osteoarthritis (152). 

We hypothesize that HF can regulate the interplay between inflammatory activation and 

MMP13 expression, and subsequently through that, it can prevent MMP13 mediated joint 

destruction in OA.  
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HYPOTHESIS AND SPECIFIC AIMS 

 

• Hypothesis: HF prevents OA associated joint destruction and inhibit the 

progression of OA by down regulation of MMP13 expression  

• Specific Aim 1: To investigate the effect of HF on MMP-13 

expression in chondrocytes during inflammation. 

CT-28I2 Human chondrocytes will be treated with HF both in the presence and 

absence of inflammatory cytokines and MMP-13 gene expression will be 

evaluated using q-PCR. 

• Specific Aim 2: To investigate the effect of HF on the progression of 

OA in Mice model. 

DMM OA-induced model is employed and animals are treated with HF. 

Progression of OA and expression of MMP-13 will be evaluated using Safranin 

O/fast Green and Immunohistochemistry staining, respectively. We will address 

whether timing of administration of HF (early after injury vs. late administration, 

4 weeks after the injury) affects potential therapeutic efficiency of HF. 
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SIGNIFICANCE AND INNOVATION

 

• Significance:  

This is preclinical study that introduces a novel therapeutic approach for the 

treatment of OA and establishes a new paradigm for alleviating the destruction of 

joint that is driven by patho-physiologic inflammation.  

• Innovation: 

 Currently, there is no treatment for OA, which can alter the progression of the 

disease. The existing pharmacological treatment for the mean time provides only 

symptomatic pain relief and have minor effect on the inflammation which leads to 

the progression of the disease since these drugs are not targeted to block the 

molecular processes responsible for the initiation and progression of the disease, 

so there is no proven structure modifying therapy available to date. Eventually, as 

the disease progresses, OA patients have to undergo total knee replacement as an 

end stage treatment.  This will be the first preclinical study, which evaluates the 

effect of HF in the osteoarthritis, and can provide supporting data for further 

clinical investigations to develop a drug to prevent the progression of 

Osteoarthritis. 
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METHODS AND MATERIALS

 

In vitro: 

ü Cell Culture: 

Immortalized C-28/I2 chondrocytes(153), were used for the in vitro studies. Ten percent 

pure HF was kindly provided as a gift by Hangpoon Chemical Co. (Seoul, South Korea). 

Then it was further purified via HPLC to >99% purity and used for the experiments. 

 Cells were seeded at 3.5 x 105 cells per well and cultured at 37°C in 5% CO 

in Dulbecco’s modified Eagle’s medium (DMEM)/Ham’s F-12 medium supplemented 

with 10% fetal bovine serum (FBS) (Gibco, Gaithersburg, MD) and 1% Penicillin-

Streptomycin (Gibco). Upon confluence, cells were split using 0.03% trypsin-EDTA and 

seeded at the same density. The second day after seeding, the media was changed to 

DMEM/F-12 with 0.2% FBS and 1% PS. In order to assess the effects of Halofuginone 

on MMP-13 expression in vitro, we added Halofuginone (200nM per well), IL-1β 

(10ng/ml) or combination of them and an equal volume of the vehicle DMSO to the 4th 

group as a control. On the third day, we added 200nM of Halofuginone and on the fourth 

day we added the IL-1β 10ng/ml per well and 6 hours later we harvested the RNA for 

quantitative polymerase chain reaction (qPCR) assay. 
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To validate the findings with another inflammatory marker, we repeated this experiment 

and used TNF-α (10ng/ml) instead of IL-1β (Table 2). 

 

 

Groups Day1 Day2 Day3 Day4 

- HF 
- IL-1β/TNF-α 

10% FBS 1% FBS   

+ HF 
- IL-1β/TNF-α 

10% FBS 1% FBS + 200 nM HF  

- HF 
+IL-1β/TNF-α 

10% FBS 1% FBS  +10ng/ml IL-1β/TNF-α 

+HF 
+IL-1β/TNF-α 

10% FBS 1% FBS + 200 nM HF +10ng/ml IL-1β/TNF-α 

 
 
 
Table 2: Experimental conditions for qPCR experiments. Medium and supplements were 
added to the chondrocytes culture medium at the following concentrations: Halofuginone 
(200nM per well), IL-1β (10ng/ml)/ TNF-α (10ng/ml) 
 
 
 
 

ü Quantitative real-time PCR: 

  

C-28/I2 chondrocytes were activated as described above, collected at the indicated times 

and cell pellets were flash-frozen in liquid nitrogen. Total RNA was isolated from 

cultured cells using RNeasy mini kits (Quiagen, Hilden, Germany) according to the 
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manufacturer’s instructions. Afterwards the RNA samples were treated with DNase I 

(Sigma).  

 

Sybrgreen quantitative real-time PCR was performed on RNA samples following reverse 

transcription via SuperScript II first-strand cDNA synthesis kit (Invitrogen). All qPCR 

data was collected on an iCycler thermal cycler (Bio-Rad). Quantitative real-time PCR 

was performed using primers for MMP-13. Primer sequences are listed below.  

(5_-CCAGTCTCC- GAGGAGAAACA-3_ [forward] and 5_-AAAAACAGCTCC- 

GCATCAAC-3_ [reverse]) and GAPDH (5_-GGTGAAGGT- CGGAGTCAACGGA-3_ 

[forward] and 5_-GAGGGATCTC- GCTCCTGGAAGA-3_ [reverse]) 

 

PCR reaction was performed at 95 °C for 3 min followed by 50 cycles of 95 °C for 30 

seconds, 60°C for 30 seconds, and 72°C for 30 seconds, with a final extension at 72°C 

for 4 min. A melting curve (temperature range between 55 and 95 °C with +0.5 °C 

intervals) was generated to test the specificity of the PCR product, at the end of the PCR 

cycles. A cDNA sample in each experiment was tested in triplicate and each experiment 

was performed two times. As an internal control, we used glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) gene. We tested the efficiency of PCR (standard curve) by 

plotting the amount of PCR product versus the known amount of a template, 0.001, 0.01, 

0.1, 1, and 10ng. In theory, when the slope of the standard curve is -3.322, the efficiency 

of PCR is considered 100%. In our experiments, the efficiency reached 90% or higher.  
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In vivo: 

ü DMM OA model: 

DMM injury-induced osteoarthritis model was used for the in vivo analyses of this study. 

Mice at the age of two months were anesthetized with Ketamine (100 mg/kg BW) and 

Xylazine (10 mg/kg BW) intra-peritoneally, and knees were prepared for aseptic surgery. 

Buprenorphine was provided peri-operatively at 0.09 mg/kg subcutaneously. After 

sedation, a bland ophthalmic ointment was placed in both eyes to prevent desiccation of 

the cornea. The criteria used to assess the level of anesthesia during the surgical 

procedure was respiration rate, muscular relaxation and toe or tail pinch. The level of 

consciousness was assessed every five minutes. Mice were clipped around the site of 

incision with an animal clipper.  The clipped site was scrubbed with surgical disinfectants 

10% Povidone-iodine three times and wiped with 70% alcohol. The joint capsule 

immediately medial to the patellar tendon was incised and opened with a #15 blade. To 

expose either the intercondylar region and providing visualization the meniscotibial 

ligament of the medial meniscus, a blunt dissection of the fat pad over the intercondylar 

area was performed. Then, The medial meniscotibial ligament (MMTL) was identified 

running from the cranial horn of the medial meniscus laterally into the anterior tibial 

plateau. Sectioning of MMTL with a #11 blade results in the destabilization of the medial 

meniscus (DMM). The MMTL anchors the medial meniscus (MM) to the tibial plateau, 

while the anterior cruciate ligament restricts the tibia from moving anteriorly, relative to 
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the femur. When MM is intact, there is more balance and area of contact between the 

articulating surfaces, providing a larger area to transfer the weight-bearing forces. Upon 

transection of the MMTL, the MM displaces medially, and weight bearing area will 

concentrate on a smaller area, leading to increased mechanical stress. Upon transection of 

the MMTL, the mechanical load on the knee joint is altered, which leads to increased 

mechanical stress so approximately 12 weeks post operation there is extensive articular 

cartilage degeneration in the surgical knee.  

The joint’s capsule was closed using a continuous 8-0 tapered Vicryl suture and for the 

subcutaneous layer we used 7-0 cutting Vicryl. The skin was closed by one or more 

sutures and triple antibiotic ointment was applied on the incision. For the post-surgery 

recovery period, the mice were placed on an electric blanket to prevent hypothermia. 

Mice were stimulated every 10 minutes. After they return to sternal recumbency and have 

regained the ability to control their airways, the mice were returned to their room and 

monitored continuously until they have recovered from anesthesia.  Buprenorphine at 

0.05 mg/kg was provided subcutaneously every 12 hours in first 48 hours post-surgery. 

We monitored post-operative animals within 3 hrs post-operation including respiration 

rate, muscular relaxation and toe pinch. Animals were monitored twice daily for four 

days following surgery. We recorded the care (including administration of analgesics) 

and monitoring in animals post-operatively with the Rodents Surgery Report (RSR). 

After 4 days post-operation, we used the Experimental Illness Report (EIR) to record the 

care and monitoring of experimental illness in animals. 
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There are no reports indicating that such surgery affects the health of the mice, their 

eating, drinking and joint movement and the mice undergone surgery develop early 

histological signs of OA by the time when they are euthanized at 12 weeks post-surgery 

(154).  

However, we were aware that animals may develop some complications/impairment such 

as lameness, irritation and sluggish immediately post surgery.  Additional care, such as 

food and hydragel on a Petri dish placed on the bottom of the cage, were arranged to 

ensure that animals are able to reach food and water. In this case, the vet staff would 

contacted or animals were humanely euthanized. 

In addition, if the animals show any sign of infection in the surgical area, we would have 

treat them with antibiotics, such as Vetropolycin (bacitracin-neomycin-polymyxin 

ointment) applied on surgical area. 

The animals used for this study didn’t develop any complications or infection during the 

study. 

Mice were kept in a virus-free animal facility at Harvard Medical School under a 12-hour 

lighting schedule (12 hours with light and 12 hours without light).  
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ü HF treatment:  

After the DMM surgery, we divided the animals into 3 groups, 6-7 mice per group and 

for Test 1 group we started the Halofuginone treatment with subcutaneous injections 2 

days post DMM surgery (400 µg/kg diluted in 1ml PBS) every other day for 12 weeks. In 

the Test 2 group we started the Halofuginone treatment with subcutaneous injections 4 

weeks post DMM surgery (400 µg/kg diluted in 1ml PBS) every other day for 8 weeks. 

The 3rd group served as the control group which they received 1ml PBS subcutaneous 

injections with the same intervals and pattern as their peer test groups. 

 

ü Joint collection, processing and sectioning: 

12 weeks post DMM surgery all the mice sacrificed by CO2 asphyxiation.  

We displace the air in a suitable airtight container with CO2 fed in from a compressed 

gas cylinder. We placed the animals gently in the container. We verified that the regulator 

has the correct psi (pounds per square inch), which is no higher than 5 psi. The flow rate 

should displace no more than 30% of chamber/cage volume per minute. Based on the 

guidelines, for a typical mouse cage this would be ~2 liters/minute. Unconsciousness 

occurs within 30 seconds, but animals were left in the container for several minutes to 

ensure death. We confirmed death by lack of cardiac pulse. We patiently waited 

approximately 3-5 minutes for the animal to stop moving or breathing. The Eyes should 

be fixed and dilated then we turned off CO2 tank and the regulator valve to stop the flow 

of CO2. 
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All protocols and procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the Harvard University.   

Then both left and right knee joints were harvested and prepared for sectioning and 

analysis. We dissected the knee joints and removed the skin and muscles. Sample tissues 

were fixed in 10% neutral buffered paraformaldehyde solution (VWR, Radnor, PA, USA) 

at the room temperature for 6 hours. Then they have kept in 4°C overnight, then we 

washed the samples with tap water every 30 min for 5 hours. Afterwards we decalcified 

them with 20% EDTA solution for two weeks and changed the decalcifying solution 

every two days. After 2 weeks we washed the joints with PBS for 30 mins. To check the 

efficacy of decalcification we did the neutralizing test with Cal-arrest (Decal Chemical 

Corp.). Then we dehydrate the specimens with ascending alcohol row (2–3 h EtOH 50 %, 

2–3 h EtOH 70 %, over night EtOH 96 %, 4 h EtOH 96 %).  

We removed the alcohol and solvent with 2-propanol (twice 2–6 h) afterwards. The 

specimens were then ready for embedding. 

The samples were processed and embedded in paraffin at 60°C and the blocks cooled 

down at least for 24 hours when they were ready for sectioning.  We cooled the paraffin 

blocks at 0°C for at least 30 min before sectioning. 

Six-µm-thick mid-saggital sections at different levels were cut from the medial 

compartment of the joints. The sections were mounted on the slide and dried for at least 3 

days at 37°C, then they were stained with safranin O/Fast Green (SO/FG).  
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ü Safranin O/Fast Green staining: 

All samples were deparaffinized in two 6 and 8-min serial washes of xylene. After 

deparaffinizing, the sections were rehydrated using different concentrations of Ethanol 

from 100% to 70% then the slides were stained with hematoxylin for 3 min, and rinsed 

and placed in Scott’s buffer for 2 min. After rinsing the slides into the tap water, slides 

were stained in 0.2% aqueous Fast green for 4 min and counterstaining with 0.5% 

Safranin O for 5 min. Lastly, the slides were dehydrated using ethanol serial dilution, 

then cleared in xylene, and mounted onto glass slides using Pre-mount. Each of the 

stained sections were evaluated under light microscope and photographed using a light 

microscope equipped with a CCD video camera.  

 

Histomorphometric measurements were recorded by two blinded observers based on the 

semi-quantitative Modified Mankin scoring system recommended from the OARSI 

(155)(Table 3). 
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Grade Osteoarthritic damage 
0 Normal 
0.5 Loss of Safranin-O without structural changes 
1 Small fibrillation without loss of Cartilage 
2 Vertical clefts down to the layer immediately below the superficial layer and 

some loss of surface lamina 
3 Vertical clefts/erosion to the calcified cartilage extending to <25% of the 

articular surface 
4 Vertical clefts/erosion to the calcified cartilage extending to <25-50% of the 

articular surface 
om5 Vertical clefts/erosion to the calcified cartilage extending to <50-75% of the 

articular surface 
6 Vertical clefts/erosion to the calcified cartilage extending to >75% of the 

articular surface 
 

 

We evaluated all the specimens through all the weight bearing area of the joint with 

50µm intervals. We scored each section according to the scoring system in the Table 2. 

We recorded the maximum number for each animal through the joint (figure 16). 

Table 3: Semi-quantitative Modified Mankin scoring system recommended 
from OARSI. 



	
   49	
  

  
 

Figure 16: Here is a representative image for morphometrical evaluation of osteoarthritis 
using a Safranin-O stained section. The histology image has taken from a right knee joint 
4 weeks after DMM surgery. Black arrow shows area of acellular/unstained cartilage, 
grey arrow is the whole cartilage area and white arrow refers to subchondral bone plate 
(SBP). At ×100 magnification. 
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ü Immunohistochemistry staining: 

The samples were processed for paraffin embedding. For each knee joint, a series of 

sectioning each 6-µm in thickness was taken. Approximately 120-150 sections represent 

the entire mouse knee joint from anterior to posterior side for the surgically induced OA 

mice. Every 20th section was collected for immunohistochemistry staining.  

One slide from each mouse from all 3 groups has been selected for double 

immunohistostaining (Total of 6 or 7 per groups). The selection of the slide was based on 

the evaluation of safranin O/Fast Green stainings. We chose the slide right after or before 

the highest scored slide so in this case that one slide from each animal was representative 

of the worst condition of joint in each animal. Each slide contains up to 10 knee joint 

sections. 

 

The sections were deparaffinized and quenched for endogenous peroxidase activity. The 

slides were incubated with primary polyclonal antibodies [rabbit polyclonal antibody 

against mouse MMP-13 (1:400 dilution, cat. AB8120; Chemicon, Temecula, CA)], at 

4°C overnight. After washing with PBS, the slides were treated with secondary 

antibodies, goat anti-rabbit IgG Biotinylated at room temperature for 30 minutes. Color 

development was performed using a peroxidase substrate (Vector Nova-RED Substrate, 

cat. no. SK-4800; Vector Laboratories, Burlingame, CA) with avidin and biotinylated 

horseradish peroxidase (Vectastain ABC Kit, cat. no. PK-4000; Vector Laboratories). 
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Sections were counterstained with 0.2% Fast Green solution. Staining without primary 

antibody also were performed as negative controls.  

 
ü Statistical analysis  

For experiments comparing two groups (e.g. relative mRNA expression), two-tailed 

unpaired student’s t-test was applied. Results of all quantitative assays involving multiple 

time points (e.g. OARSI score of joint destruction) were analyzed using analysis of 

variance (ANOVA) followed by post-hoc tukey test. P < 0.05 was considered to be 

significant difference. 
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RESULTS

 

To evaluate the anti-inflammatory effects of HF and their possible therapeutic effects in 

OA, we initially evaluated the effects of HF on expression of MMP13, the important 

mediator of joint destruction, in vitro. To confirm the in vitro findings, we then evaluated 

the effect of administration of HF in an OA animal model in vivo. 

 

Inflammation induces overexpression of MMP-13 and HF inhibits inflammation-induced 

production of MMP-13. 

 

MMP-13 the central mediator in pathogenesis of OA and its overexpression is associated 

to joint destruction. The new paradigm of OA pathogenesis emphasizes on the role of 

inflammation in the progression of osteoarthritis. To evaluate the potential role of HF as a 

treatment that inhibit the progression of OA, we studied the effects of inflammation and 

addition of HF on MMP-13 mRNA expression. We used IL-1β and TNF-α, which are the 

main inflammatory cytokines in OA pathogenesis to produce the inflammatory 

environment, in vitro. We co-incubated chondrocytes with HF, IL-1β, or the combination 

of both, and compared the mRNA expression of MMP-13 to that of the untreated vehicle 

group.  Inflammatory cytokine (addition of IL-1β) significantly increased expression of 

MMP-13 (relative expression was 13.77 ±1.3, p value= 0.006). When HF was also added 
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in addition to IL-1β, expression of MMP-13 was significantly reduced, close to the level 

of the untreated group (relative expression was 1.73 ±0.9, p value= 0.01). 

Compared to the vehicle group, adding HF alone did not significantly alter the expression 

of MMP-13 (relative expression was 0.76 ±0.13, p value= 0.4). These results indicate that 

Inflammation induces overexpression of MMP-13 and HF inhibits inflammation-induced 

production of MMP-13. (Figure 17) 

 

 
 
 

 

Figure 17: HF inhibits the expression of MMP-13 when it is co-incubated with the IL-1β  

in the CT28/I2 cells 
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To validate these findings, we also used TNF-α as another inflammatory marker and we 

observed similar results. Addition of TNF-α significantly increased the expression of 

MMP-13 while co-incubation of HF and TNF-α did not significantly alter MMP-13 

compared to vehicle group, which indicates that addition of HF blocks TNF-α induced 

overexpression of MMP-13. (Figure 18) 

 

 

 

Figure 18: HF inhibits the expression of MMP-13 when it is co-incubated with the TNF-α 

in the CT28/I2 cells 
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Then to prove our findings, we used animal model of OA to see if HF will inhibit joint 

destruction and expression of MMP-13 and if timing of administration of HF would have 

any effect on the progression of OA. 

 
HF inhibits the joint destruction of OA in DMM-surgery osteoarthritic model. 
 
None of the animals had any health related issues after 12 weeks post DMM-surgery. 

Neither surgery, nor the HF treatment caused any complication for the animals. Injection 

of HF in the mice osteoarthritis model significantly reduced Osteoarthritis progression 

according to OARSI scoring. The mean OARSI score for the DMM-surgery non-treated 

group was 3.8±0.33 vs. the scoring for the two treated groups 1.16±0.38 (in the group 

that had HF treatment 4 weeks post DMM surgery) and 1.07±0.20 (in the group that had 

HF treatment started right after the surgery) with the p-value<0.05. Post hoc turkey test 

showed there was no difference between early vs. late administration of HF (Figure 19). 

Figure 20 illustrates representative Safranin O/Fast green staining of histologic sections 

of osteoarthritis induced by DMM surgery.    
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Figure 19: HF treatment reduced the progression of OA in DMM surgery osteoarthritis 
model 
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Figure 20: Safranin O/Fast green staining at 12 weeks after DMM surgery (10x magnification) (a) 
Control group (PBS injected, untreated animals) shows destruction of cartilage, wider erosion, 
irregular surface and demonstrates grade 5 OARSI semi-quantitative scoring. (b) Early treatment 
(HF injections 2 days post DMM surgery every other day for 12 weeks) demonstrates grade 0.5 
OARSI semi-quantitative scoring (c) Late treatment (received Halofuginone injections 4 weeks 
post DMM surgery every other day for 8 weeks, and demonstrates grade 1 OARSI semi-
quantitative scoring. In the treated animals (b and c) less cartilage destruction is observed 
compared to untreated animals (a). 

a	
  

b	
  

c	
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In vivo: HF reduces the expression of MMP-13 in DMM-surgery osteoarthritic model 

While MMP-13 was overexpressed in the control (DMM surgery without HF treatment) 

groups in IHC staining, expression of MMP13 was suppressed by injection of HF in both 

test groups and MMP13 was hardly detected in the both treated groups (figure 21). 

 

  

Figure 21: 
Immunohistochemistry 
staining for MMP-13, in 
histological	
  sections of 
osteoarthritic knee 
induced by DMM 
surgery in mice model 
(a) Control group (PBS 
injected, untreated 
animals) prominent 
expression of MMP-13 
(Brown spots pointed by 
blue arrows) (b) Early 
treatment (received HF 
injections 2 days post 
DMM surgery every 
other day for 12 weeks) 
and MMP-13 is hardly 
detected (c) Late 
Treatment (received 
Halofuginone injections 
4 weeks post DMM 
surgery every other day 
for 8 weeks, and MMP-
13 expression is rare. In 
(b) and (c) there is 
significantly less MMP-
13 signal observed 
compared to (a) 10x 

a	
  

b	
  

c	
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DISCUSSION

 

Current treatments for OA mainly focus on symptomatic management, such as 

medications to relieve the pain and maintaining quality of life and everyday activities of 

patients. The current therapeutic approach includes pharmacological therapy and surgery. 

The patient may start physical therapy (PT) or occupational therapy (OT) but when pain 

is severe and daily activities become difficult, surgery is recommended which is total 

joint replacement. As an example, knee OA patients wait, on average, 4.4 years from 

diagnosis to joint replacement (156). However, there is a tremendous need for non-

surgical therapy and intervention to improve the quality of life of OA patients and 

currently, there are no proven therapies capable of preventing or slowing down the 

process of the disease. In this study, we investigated HF as a potential therapeutic drug 

for preventing the progression of OA. We hypothesized that HF inhibits OA associated 

joint destruction and inhibit the progression of OA by down regulation of MMP-13.  

It has been proven that IL-1β and TNF-α up regulate the catabolic processes in OA and 

are important mediator cytokines in the development of the disease (68, 157-160). These 

inflammatory cytokines were shown to stimulate and significantly increase the expression 

of MMP-13 in chondrocytes (161-168). On the other hand, it is well established that the 

expression of MMP-13 is increased in OA and it plays a critical role in the destruction of 

cartilage and it is considered to be the main factor in the development and progression of 
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OA (169-171). Thus, hypothetically, suppressing IL-1β and TNF-α and subsequent down 

regulation of MMP-13 should inhibit the destructive processes induced by overexpression 

of MMP-13. 

In line with the previous published studies, we showed in our in vitro studies that, 

expression of MMP-13 was significantly increased in the presence of the important 

inflammatory cytokines IL-1β and TNF-α. When HF was added to the chondrocytes that 

were co-incubated with IL-1β and TNF-α, the expression of MMP-13 was down 

regulated close to the baseline expression when there was no inflammatory cytokine 

added. 

Suppressing effect of HF on MMP-13 was also confirmed in the in vivo model as well, 

where expression of MMP-13 was detected by IHC in control animals, while in those 

who were treated with HF, MMP-13 expression was suppressed.  

To prove this hypothesis that administration of HF and subsequent suppression of MMP-

13 will lead to prevention of joint destruction, we applied Safranin O/fast Green staining 

and OARSI scoring system which is the standard way to assess joint destruction. We 

observed that the destruction of joint was significantly decreased by administration of 

HF. In our animal model, in untreated animals there was successful induce of OA with 

joint destruction. 

We also studied the timing of starting HF treatment on our preclinical model. We 

considered two time points for starting the treatment and administration of HF (early vs. 
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late) and observed that both of them effectively decreased joint destruction with no 

substantial difference. In other words, we showed that there is no difference if HF is 

administered during the acute phase of inflammation (right after DMM surgery), 

compared to delayed treatment (4 weeks after DMM surgery) when the acute 

inflammation has been resolved. Thus, according to these preclinical data, HF does not 

need to be immediately started after injury, to prevent injury induced osteoarthritis.   

A therapeutic tool which can suppress inflammation induced MMP-13 can potentially be 

useful to inhibit joint destruction in OA. We showed that HF down regulates the 

production of MMP-13, thus, decreases the joint destruction associated with OA. In line 

with our results, there is one published study by Pines et al that demonstrates the role of 

HF in suppressing MMP-13 in pancreatic tumors where HF decreased MMP-13 levels 

significantly (172).  

The inhibitory effect of HF on pro-inflammatory cytokines has been previously shown in 

various studies (128, 144, 145). Liang et al have demonstrated that HF significantly 

decreases the levels of TNF-α and IL-1β and it suppresses the secretion of inflammatory 

cytokines (173); these are the cytokines that play a critical role in pathogenesis of 

osteoarthritis and we have shown their impact on stimulation and upr egulation of MMP-

13.  

Two different mechanisms of action have been described for HF. The first is inhibition of 

Th17 differentiation, which leads to inhibition of the inflammation by activation the AAR 

response by binding to prolyl-tRNA synthetase (127-129, 145). Th-17 cells produce pro-
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inflammatory cytokines and have been shown to be active in OA as well (87-91). 

Therefore, inhibition of their differentiation can lead to diminished production of 

inflammatory cytokines and consequently, lower production of MMP-13. The second 

known mechanism of HF is inhibition of Smad3 phosphorylation and down regulation of 

the TGF-β signaling pathway (124, 126). Morales et al has shown that TGF-β is stored in 

cartilage in high amounts (174). Homandberg et al have demonstrated that following 

trauma and injury, TGF-β is released from the ECM in the cartilage (175). There is also 

evidence that during OA, TGF-β is increased in cartilage (176). Higher levels of TGF-β 

have been reported in serum of OA patients and Kapetanakis et al claimed that there is a 

strong correlation between TGF-β levels and severe pain and dysfunction according to a 

higher grade of Kellgrene Lawrence and WOMAC scale (177). On the other hand, Xavier 

et al have reported that HF down regulates the Smad7 and TGF-β, which leads to 

inhibiting the activation of Smad2 and Smad3 (178). All together, with HF down 

regulating the TGF-β signaling, we would expect less cartilage damage in OA. 

HF has been previously studied on different diseases like cancer (179-183), scleroderma 

(149) and demonstrated therapeutic effects as anti-malaria (184), anti-fibrotic (117, 126), 

inhibiting angiogenesis in the tumors (146) and anti-inflammatory effects (128, 144, 

185). However, there was no published study on the effects of HF on OA to this date. 

This is the first study that evaluates the efficacy of HF in a preclinical OA model and 

these results introduce HF as an inhibitor for the progression of OA in DMM surgery in 

mice. HF is an FDA approved medication and it has been administered orally in a phase I 
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clinical trial for patients with solid tumors and has been proven to reach effective 

therapeutic plasma levels without any toxicity.  

The result of this preclinical study shows that HF is a very potent inhibitor of MMP-13 

expression and pathologic joint destruction in OA and p ave the ground for further 

clinical studies that are required to provide better insight into long-term outcomes relative 

to other treatment modalities and clarify whether inhibiting the pro-inflammatory 

cytokines and blocking the MMP-13 production by HF may replace current techniques as 

the gold standard. 
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CONCLUSIONS

 

This is the first study that investigates Halofuginone (HF) for the prevention of 

progression of Osteoarthritis (OA). We demonstrate that HF inhibits inflammatory 

induced MMP-13 expression and diminishes joint destruction. There is no difference 

between administration of HF in acute early inflammatory phase verses late phase when 

acute inflammation has subsided. These preclinical findings provide supporting data for 

future clinical investigations for HF as a therapeutic target for osteoarthritis.  
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in humans [Glasson et al. 2010; Little and Fosang, 
2010]. Gene profiling in experimental OA models 
has provided additional targets for consideration 
[Appleton et al. 2007; Bernardo et al. 2011; 
Lodewyckx et al. 2012; Loeser et al. 2012; 
Yasuhara et al. 2011]. Furthermore, certain 
mediators that determine initiation and progres-
sion of cartilage damage are common to all of 
these models.

The importance of proteoglycan depletion in 
cartilage erosion was demonstrated in Adamts5 
knockout mice, which are protected against pro-
gression of cartilage destruction [Glasson et al. 
2005; Stanton et al. 2005]. However, aggrecan 
depletion, by itself, does not drive OA progres-
sion, as suggested by recent studies in Mmp13 
knockout mice showing that MMP-13 deficiency 
inhibits cartilage erosion, but not aggrecan deple-
tion [Little et al. 2009]. The importance of the 
stability of the extracellular matrix to cartilage 
health is also documented in studies of Timp3–/– 
mice, which each show age-dependent cartilage 
degeneration similar to that of patients with OA 
because of loss of this key MMP and ADAMTS 
inhibitor [Sahebjam et al. 2007]. Similarly, 

Fgf2–/– mice exhibit accelerated spontaneous 
and surgically induced OA due to loss of the 
intrinsic capacity of FGF-2 to inhibit ADAMTS5 
[Chia et al. 2009].

Mouse models have also taught us about the 
patterns of receptors on chondrocytes that sense 
changes in the pericellular matrix. The receptors 
on the resting chondrocyte are protected from 
interacting with certain matrix components by 
the unique structure of the pericellular matrix. 
But their expression and activation change in 
response to mechanical or inflammatory stimuli. 
In Col9a1 knockout mice and Col11a1 haploin-
sufficient mice, the development of OA-like 
changes can be observed with aging, owing to 
decreased amounts of the minor collagens that 
contribute to type II collagen fibril formation 
[Hu et al. 2006; Xu et al. 2005]. In these mice, 
there is little pericellular matrix and the fibrillar 
collagen bundles can be observed closer to the 
chondrocytes. This results in exposure of the 
receptor tyrosine kinase, discoidin domain recep-
tor 2 (DDR2) to its ligand, native type II collagen, 
and preferential induction and activation of 
MMP-13. The association of DDR2, MMP-13, 

Figure 2. Strategies for studying mechanisms of osteoarthritis. The upper left panels show Safranin O/
Fast green-stained human cartilage sections from a normal individual and a patient with osteoarthritis 
(OA) (arrows mark surface fibrillations and duplicated tidemark, derived from the tibial plateau [lower left 
panel] of a patient who underwent total knee replacement surgery (the medial side on the right is more 
affected than the lateral side). The upper right panels show Safranin O/Fast green-stained murine cartilage 
sections from knee joints left unoperated (control) or subjected to destabilization of the medial meniscus 
(DMM) surgery. Differentially regulated proteins and genes are identified in both the clinical material and 
the preclinical model and mechanisms are further studied in cell culture models of isolated chondrocytes in 
three-dimensional pellet or high-density monolayers.

Figure 1: Destruction of cartilage in an Osteoarthritic 
joint (Right image, pointed by Black arrow) compared to 
an intact cartilage in a healthy joint (Left image)	
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TNF-a [13,14]. On the contrary, noninjurious cyclical
loading of sufficient magnitude can inhibit IL-1-induced
cartilage matrix degradation [15]. Thus, even in the
absence of overt inflammation, chondrocytes may
respond to mechanical stress by stimulating the expres-
sion and/or activities of inflammatory mediators or by
inducing inhibitors that serve as feedback modulators.

Role of cell–matrix interactions
Chondrocytes have receptors for extracellular matrix
(ECM) components, many of which are responsive to
mechanical stimulation. Included among these receptors
are several of the integrins, which serve as receptors for
fibronectin and type II collagen fragments. Activation of
these receptors can stimulate the production of matrix-
degrading proteinases and inflammatory cytokines and
chemokines, but whether these are initiating events or
serve to feedback amplify matrix degradation has not
been established. The importance of proteoglycan

depletion in cartilage erosion was demonstrated in
Adamts5 knockout mice, which are protected against
progression in the surgical osteoarthritis model. However,
aggrecan depletion, by itself, does not drive cartilage
erosion, as shown in recent studies in Mmp13 knockout
mice, showing that MMP-13 deficiency inhibits osteoar-
thritis progression in the presence of aggrecan depletion
[4].

In contrast to integrins, which bind collagen fragments,
discoidin domain receptor 2 (DDR2) binds specifically to
type II and X collagen fibrils, leading to the activation of its
integral receptor tyrosine kinase. DDR2 is upregulated in
osteoarthritis cartilage and induces specifically the expres-
sion of MMP-13 associated with cleavage of type II col-
lagen. This mechanism was verified in type XI collagen-
deficient (Cho/þ) mice with accelerated osteoarthritis,
which was attenuated, along with reduced MMP-13
expression, when they were crossed with mice deficient
in DDR2 [16]. However, the type II collagen-containing

Inflammation in osteoarthritis Goldring and Otero 473

Figure 1 Key mediators involved in proinflammatory events in osteoarthritis

In response to alterations in the joint environment, inflammation-induced and stress-induced signaling pathways may be activated in the synovium and
cartilage resulting in the production of cytokines, chemokines, adipokines, Toll-like receptor (TLR) ligands, and other inflammatory mediators such as
nitric oxide. This may occur also in response to alterations in the pericellular matrix or the release of damage-associated molecular patterns, which are
TLR and RAGE ligands. The consequent upregulation of cartilage-degrading proteinases by extracellular matrix (ECM) proteins or ECM degradation
products can further promote catabolic activation, phenotypic shift, and apoptosis.

Figure-2: Biomechanical stress, leads to up-regulation of the synthetic activity and the 
inflammatory cytokines, chemokines, adipokines, Toll-like receptor (TLR) ligands, 
and other inflammatory mediators such as nitric oxide. The upregulation of cartilage-
degrading proteinases by extracellular matrix (ECM) proteins and products can 
promote catabolic activation, phenotypic shift, and apoptosis.  

Osteoarthritis. Current opinion in rheumatology. 2011;23(5):471-8. Figure used with 
permission. 
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Figure-3: Effects of TGF-β signaling on healthy and osteoarthritic cartilage 

TGF-β and osteoarthritis--the good and the bad. Nat Med. 2013 Jun;19(6):667-
9. doi: 10.1038/nm.3228. Figure used with permission. 
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Activation of canonical NFNB (p65/p50) and 
stress-induced and mitogen-activated protein 
kinase (MAPK) signaling is required for the chon-
drocytes to express MMPs, ADAMTSs, and 
inflammatory cytokines themselves [Goldring  
et al. 2011; Marcu et al. 2010; Pulai et al. 2005]. 
NFNB signaling strongly induces the expression of 
transcription factors such as HIF2D [Yang et al. 
2010] and Elf3 [Otero et al. 2012], which in turn 
bind to and activate MMP13 and other gene pro-
moters (Figure 1). The stress-induced MAPK 
pathways, including the ERK, c-Jun N-terminal 
kinase (JNK) and p38 MAPK cascades, coordi-
nate the induction and activation of gene expres-
sion through transcription factors such as activator 
protein 1 (cFos/cJun), ETS, C/EBPE, and Runx2 
[Goldring and Sandell, 2007; Liu et al. 2010; 
Long and Loeser, 2010; Tetsunaga et al. 2011; 

Tsuchimochi et al. 2010]. Induction of both 
ADAMTS4 and 5 requires Runx2 [Tetsunaga  
et al. 2011], and NFNB and HIF2D [Yang et al. 
2010] mediate ADAMTS4 upregulation, whereas 
MMP-13 induction requires all three transcrip-
tion factors. Recent studies indicate that epigenetic 
mechanisms also play a role through modulation 
of the DNA methylation status on promoters driv-
ing expression of, for example, IL1B and MMP13 
genes [Hashimoto et al. 2009] or through dysreg-
ulation of the microRNAs that are important for 
maintenance of homeostasis [Dudek et al. 2010; 
Miyaki et al. 2010].

As articular cartilage matrix proteins are degraded, 
activation of certain receptors stimulates the pro-
duction of matrix-degrading proteinases and 
inflammatory cytokines and chemokines, either 

Figure 1. Signaling pathways that converge on matrix metalloproteinase13 (MMP13) gene transcription in 
chondrocytes. Binding of the receptor tyrosine kinase, discoidin domain receptor (DDR) 2, to native type II 
collagen results in activation of RAS/RAF/MEK/extracellular-regulated kinase (ERK) signaling in a manner 
independent of integrin- or cytokine-induced signaling. Interleukin (IL)-1, toll-like receptor (TLR) ligand, 
reactive oxygen species (ROS), advanced glycation endproducts (AGEs) interact with the cell through distinct 
receptors that transduce phosphorylation events via cytoplasmic interactions initiating various protein kinase 
cascades. The major pathways involve activation of MAP triple kinases (MTK), MAP kinase kinases (MKKs) 3/6 
and 4/7, and p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which lead 
to activation of activator protein 1 (AP-1) (cFos/cJun), Runx2, E Twenty Six (ETS) factors, HIF2D, and C/EBPE, 
among other transcription factors; and inhibitor of NB (INB) kinases (IKK) D and E, leading to activation of 
nuclear factor kappa B (NFNB) and its translocation to the nucleus. The responses of the target gene, MMP13, 
depend on the presence of DNA sequences within its promoter that bind to the various transcription factors.

Figure-4: Stimulation of receptors for type II collagen fragments, activates the 
production of matrix degrading proteinases and inflammatory cytokineswhich leads 
to release of ROS and production of MMP-13. 
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Figure-5: Molecular pathogenesis of osteoarthritis under mechanical stress.  
Nat Clin Pract Rheumatol. 2006 Jun;2(6):304-12. Figure used with permission. 
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Th cells (Th1, Th2, and Th17), T 
regulatory (Treg) cells and induced T 
regulatory (iTreg) cells (Th3 and Tr1). 

De Lange-Brokaar BJ, et al. Osteoarthritis 
Cartilage. 2012 Dec;20(12):1484-99. 

Figure-6: Th cells lineage (Th1, Th2 and Th17) , T regulatory (Treg) cells and 
induced T regulatory (iTreg) cells (Th3 and Tr1) in Osteoarthritis 
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Figure-7: Involvement of the synovium in OA pathophysiology 

Sellam, J. & Berenbaum, F. (2010) The role of synovitis in pathophysiology and clinical 
symptoms of osteoarthritis Nat. Rev. Rheumatol. doi:10.1038/nrrheum.2010.159. 
Figure used with permission. 
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Figure-8: The role of proinflammatory cytokines in the pathophysiology of OA.  

Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat 
Rev Rheumatol. 2011 Jan;7(1):33-42. doi: 10.1038/nrrheum.2010.196. Epub 2010 
Nov 30. Figure used with permission. 
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Macrophages and T-cells have a 
central role 
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Figure-10: Pharmacologic therapies and the site of their impact. 
Nat. Rev. Rheumatol. doi:10.1038/nrrheum.2010.178. Figure used with 
permission. 
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Figure-11: Osteoarthritic TMJs (B), CT scan view, compared to the normal Joint (A). 
Dentomaxillofacial Radiology (2015) 44, 20140235 . Pictures used with permission. 

 

 

 

 

 

for evaluation of TMD and makes between-study comparison
possible (Larsson and Rönnerman, 1981). Hekimo’s Di has been
extensively used to evaluate the clinical or radiographic conditions
of TMD (Shahidi et al., 2013; Kordass et al., 2012; He et al., 2010;
Barrera-Mora et al., 2012; Perillo et al., 2011; Rauhala et al., 1999).
Shahidi et al. (2013) investigated the correlation between articular
eminence steepness measured with CBCT and Helkimo’s Di and
failed to find a correlation. Kordass et al. (2012) investigated the
correlation between computer-assisted measurements of mandib-
ular opening and closing movements and Helkimo’s Di and found a
significant correlation between Helkimo’s Di and frequent popping
sounds in jaw joints and deviation. He et al. (2010) investigated the
relationship between centric relationemaximum intercuspation
discrepancy and Helkimo’s Di in pre-treated orthodontic patients
and found CReMI discrepancy in most of the pre-treated patients
with signs and symptoms of TMD. This discrepancy may be a factor
contributing to the development of TMD in these patients.

The above-mentioned barriers have been overcome with the
advent of CBCT. CBCT has several advantages over CT, such as lower
cost, better access to equipment, lower radiation, and diagnostic
efficacy as high as CT, but superior to those of panoramic radiog-
raphy and linear tomography (Barghan et al., 2012). CBCT is also
superior to CT for visualizing bony changes in TMJ patients,
analyzing lateral slices in isolation, and combining coronal and
lateral slices (Koyama et al., 2007; Honey et al., 2007). Therefore,
CBCT was the imaging method used in this study.

In this study, the condylar bony changes were detected using the
classification of Koyama et al., which was more practical and
convenient for the evaluation of bone changes in TMD patients
compared with other classifications (Koyama et al., 2007). In this
classification, types F and E are comparatively the initial stages of
bony changes. Flattening, which is a typical change of Type F, may

be an adaptive alteration (Crusoe-Rebello et al., 2003) and the first
change of progressive disease (Katzberg, 1989). Type F transitions
to Type E as the disease proceeds, indicating that TMJ is unstable
and that the bone surface will change. Moreover, some clinical
follow-up studies demonstrated that type E might advance to type
D or type S because of the progression of condylar resorption, while
type D might advance to type S after the cortical surface is restored
(Koyama et al., 2007). Thus, condylar bony changes were classified
as the progression stage of TMD in the classification of Koyama et al.
This system of classification was already introduced into the eval-
uation of condylar bony changes observed by CBCT in TMJ OA pa-
tients and was proven accurate for diagnosing condylar bony
changes (Palconet et al., 2012).

The results in this study showed that the score and degree of
Helkimo’s Di were both significantly associated with maximum
condylar bony changes and glenoid fossa bony changes evaluated
by CBCT. The development of the OA symptomatology has already
been described clinically (Rasmussen, 1983). In the initial stage, the
diagnosis of OA was difficult to separate from other types of TMD,
such as internal derangement of the TMJ, by clinical or radiographic
examination. That is, extremely few patients had symptoms of pain
or abnormal function at this stage. Instead, patients might have
clicking or periodic locking of the TMJ. Therefore, the score and
degree of Helkimo’s Di were low. In the second stage, TMJ pain
occurred. The pain may be caused by the soft tissues around the
affected joint under tension and the masticatory muscles in pro-
tective reflex co-contraction as a result of Hilton’s Law (Mercuri,
2008). Moreover, the procession of OA can lead to degradation on
the surface of the articular soft tissue. When there were large
quantities of degraded products that could not be efficiently
resorbed from the joint cavity by the synovial membrane, an in-
flammatory response might be elicited to develop synovitis and

Fig. 1. Sample images of different types of condylar bony changes according to Koyama et al.’s criteria. Images were from subjects in this study. (a) Female aged 28 years with
maximum bony change of condyle was Type F; the score of Helkimo’s Di was 2, and the degree was 1. (b) Female aged 21 years with maximum bony change of condyle was Type E;
the score of Helkimo’s Di was 5, and the degree was 2. (c) Female aged 40 years with maximum bony change of condyle was Type D; the score of Helkimo’s Di was 9, and the degree
was 2. (d) Female aged 39 years with maximum bony change of condyle was Type S; the score of Helkimo’s Di was 17, and the degree was 3.

Fig. 2. Sample images of different types of glenoid fossa bony changes classified into “negative” and “positive”. Images were from subjects in this study. (a) Female aged 25 years
with negative glenoid fossa bony change; the score of Helkimo’s Di was 7, and the degree was 2. (b) Male aged 48 years with positive glenoid fossa bony change; the score of
Helkimo’s Di was 20, and the degree was 3. (c) Female aged 49 years with positive glenoid fossa bony change; the score of Helkimo’s Di was 17, and the degree was 3. (d) Female
aged 30 years with positive glenoid fossa bony change; the score of Helkimo’s Di was 11, and the degree was 3.

N. Su et al. / Journal of Cranio-Maxillo-Facial Surgery 42 (2014) 1402e1407 1405
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Figure-12: (a) Outline of a right knee joint. The MMTL is transected to generate 
destabilization of the medial meniscus (DMM) and the ACL is transected in the ACLT 
model. (b) Overview of Safranin-O stained of a mouse knee joint 4 weeks after DMM 
induction. Grey arrow indicates articular cartilage, white arrow indicates growth plate. 
×40 magnification. ACL: anterior cruciate ligament; F = femur; LCL = lateral collateral 
ligament; LFC: lateral femoral condyle; LM = lateral meniscus; LTP: lateral tibial 
plateau; MFC: medial femoral condyle; MM: medial meniscus; MMTL = medial 
meniscotibial ligament; MTP: medial tibial plateau; PCL: posterior cruciate ligament; T = 
tibia . 

Taken from Mouse genetics Methods and Protocols ISSN 1064-3745 , with permission. 
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Figure-13: Osteoarthritis progression after DMM in wild-type mice. Osteoarthritis 
progression is demonstrated on medial areas of Safranin-O stained sections of right hind 
knee joints at 2 (b), 4 (c), 6 (d), 8 (e), and 12 (f) weeks after DMM surgery. (a) is the 
contra lateral joint. Arrows indicate articular cartilage damage of femoral condyle and 
tibial plateau. (a–f) ×100 magnification   

Taken from Mouse genetics Methods and Protocols ISSN 1064-3745 , with permission. 
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Figure-14: Chemical structures of Febrifugine and Halofuginone 

 

 

 

 

Figure-­‐15:	
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Figure-16: Here is a representative image for morphometrical evaluation of osteoarthritis 
using a Safranin-O stained section. The histology image has taken from a right knee joint 
4 weeks after DMM surgery. Black arrow shows area of acellular/unstained cartilage, 
grey arrow is the whole cartilage area and white arrow refers to subchondral bone plate 
(SBP). At ×100 magnification. 
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Figure 17: HF inhibits the expression of MMP-13 when it is co-incubated with the IL-1β  

in the CT28/I2 cells 
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Figure 18: HF inhibits the expression of MMP-13 when it is co-incubated with the TNF-α 

in the CT28/I2 cells 
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Figure 19: HF treatment reduced the progression of OA in DMM surgery osteoarthritis 
model 
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Figure 20: Safranin O/Fast green staining at 12 weeks after DMM surgery (10x magnification) (a) 
Control group (PBS injected, untreated animals) shows destruction of cartilage, wider erosion, 
irregular surface and demonstrates grade 5 OARSI semi-quantitative scoring. (b) Early treatment 
(HF injections 2 days post DMM surgery every other day for 12 weeks) demonstrates grade 0.5 
OARSI semi-quantitative scoring (c) Late treatment (received Halofuginone injections 4 weeks 
post DMM surgery every other day for 8 weeks, and demonstrates grade 1 OARSI semi-
quantitative scoring. In the treated animals (b and c) less cartilage destruction is observed 
compared to untreated animals (a). 

a	
  

b	
  

c	
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Figure 21: Immunohistochemistry staining for MMP-13, in histological	
  sections of 
osteoarthritic knee induced by DMM surgery in mice model (a) Control group (PBS 
injected, untreated animals) prominent expression of MMP-13 (Brown spots pointed by blue 
arrows) (b) Early treatment (received HF injections 2 days post DMM surgery every other 
day for 12 weeks) and MMP-13 is hardly detected (c) Late Treatment (received 
Halofuginone injections 4 weeks post DMM surgery every other day for 8 weeks, and 
MMP-13 expression is rare. In (b) and (c) there is significantly less MMP-13 signal 
observed compared to (a) 10x magnification 
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c	
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Level of evidence Observation References 

Clinical Effusion, Joint swelling or palpable synovitis 
Local signs of inflammation 
Sudden increase in pain 
Night pain and morning stiffness 

Krasnokutsky et al (2008),  
Ayral(1999) 

Imaging Gadolinium-enhanced synovium and increased 
synovial volume detected by MRI 
Correlation between MRI and histological observations 
Synovitis seen using ultrasonography of symptomatic 
joints 
Association between ultrasound-detected synovitis and 
clinical symptoms of synovitis 
Macroscopic synovial changes detected by arthroscopy 
in about half of patients with knee OA 
Arthroscopic synovitis associated with progression of 
knee OA 

Loeuille et al (2005), 
Fernandez-Madrid et al (1995),  
Ostergaard et al (1997), 
D’Agostino et al (2005), Keen 
et al (2008),  
Ayral et al (1999),  
Ayral et al (2005) 

Histological Synovial hypertrophy and hyperplasia 
Infiltration of mononuclear cells 
(monocytes/macrophages, activated B cells and T 
cells) 
Adaptive immune T-cell and B-cell responses to 
fragments of extracellular matrix 
Increased angiogenesis 
Synovitis in the velocity of degenerative cartilage 

Ayral et al (2005),  
Myers et al (1990),  
Walsh et al (2007), Shibakawa 
et al (2003), Nakamura et al 
(1999), Alsalamed et al (1990), 
Sellam J et al (2010), 
Gobezie R et al (2007), 
Gierman LM (2012), 
Maldonado M (2013) 

Molecular Production and/or release of proinflammatory 
cytokines (TNF, IL-1β, IL-6, IL-8, IL-15, IL-17, IL-
21) 
Increased production of PGE2 and nitric oxide 
Increased activity of MMPs  
Production of adipokines  
Release of EGF and VEGF 
Involvement of macrophages in osteophyte formation 
via BMPs 
Release of proinflammatory and pain neurotransmitters 
(substance P, NGF) 

Benito et al (2005), 
Smith et al (1997), Shibakawa 
et al (2003), Yuan et al (2004),  
Farahat et al (2003), Furuzawa-
Carballeda & Alcocer-Varela 
(1999), Scanzello et al (2009), 
Brentano et al (2007), Presle et 
al (2006), Nissalo et al (2002), 
Raychaudhuri & Raychaudhuri 
(2009) 

Biological 
Markers 

Increased levels of CRP (detected by ultrasensitive 
assay) 
Increased levels of MMP-13, MMP-3 and MMP-9  

Pearle et al (2007), Conrozier et 
al (2000), Masuhara et al 
(2002) 

Table-1: Evidence of inflammation in OA 
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Groups Day1 Day2 Day3 Day4 

- HF 
- IL-1β/TNF-α 

10% FBS 1% FBS   

+ HF 
- IL-1β/TNF-α 

10% FBS 1% FBS + 200 nM HF  

- HF 
+IL-1β/TNF-α 

10% FBS 1% FBS  +10ng/ml IL-1β/TNF-α 

+HF 
+IL-1β/TNF-α 

10% FBS 1% FBS + 200 nM HF +10ng/ml IL-1β/TNF-α 

 
 
Table-2: Experimental conditions for qPCR experiments. Medium and supplements were 
added to the chondrocytes culture medium at the following concentrations: Halofuginone 
(200nM per well), IL-1β (10ng/ml)/ TNF-α (10ng/ml) 
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Grade Osteoarthritic damage 
0 Normal 
0.5 Loss of Safranin-O without structural changes 
1 Small fibrillation without loss of Cartilage 
2 Vertical clefts down to the layer immediately below the superficial layer and 

some loss of surface lamina 
3 Vertical clefts/erosion to the calcified cartilage extending to <25% of the 

articular surface 
4 Vertical clefts/erosion to the calcified cartilage extending to <25-50% of the 

articular surface 
5 Vertical clefts/erosion to the calcified cartilage extending to <50-75% of the 

articular surface 
6 Vertical clefts/erosion to the calcified cartilage extending to >75% of the 

articular surface 
 

 

 

 

Table-3: Semi-quantitative Modified Mankin scoring system recommended 
from OARSI. 


